Light-electric.com

IT Журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Подбор решений в excel

Функции программы Microsoft Excel: подбор параметра

Очень полезной функцией в программе Microsoft Excel является Подбор параметра. Но, далеко не каждый пользователь знает о возможностях данного инструмента. С его помощью, можно подобрать исходное значение, отталкиваясь от конечного результата, которого нужно достичь. Давайте выясним, как можно использовать функцию подбора параметра в Microsoft Excel.

Суть функции

Если упрощенно говорить о сути функции Подбор параметра, то она заключается в том, что пользователь, может вычислить необходимые исходные данные для достижения конкретного результата. Эта функция похожа на инструмент Поиск решения, но является более упрощенным вариантом. Её можно использовать только в одиночных формулах, то есть для вычисления в каждой отдельной ячейке нужно запускать всякий раз данный инструмент заново. Кроме того, функция подбора параметра может оперировать только одним вводным, и одним искомым значением, что говорит о ней, как об инструменте с ограниченным функционалом.

Применение функции на практике

Для того, чтобы понять, как работает данная функция, лучше всего объяснить её суть на практическом примере. Мы будем объяснять работу инструмента на примере программы Microsoft Excel 2010, но алгоритм действий практически идентичен и в более поздних версиях этой программы, и в версии 2007 года.

Имеем таблицу выплат заработной платы и премии работникам предприятия. Известны только премии работников. Например, премия одного из них — Николаева А. Д, составляет 6035,68 рублей. Также, известно, что премия рассчитывается путем умножения заработной платы на коэффициент 0,28. Нам предстоит найти заработную плату работников.

Для того, чтобы запустить функцию, находясь во вкладке «Данные», жмем на кнопку «Анализ «что если»», которая расположена в блоке инструментов «Работа с данными» на ленте. Появляется меню, в котором нужно выбрать пункт «Подбор параметра…».

После этого, открывается окно подбора параметра. В поле «Установить в ячейке» нужно указать ее адрес, содержащей известные нам конечные данные, под которые мы будем подгонять расчет. В данном случае, это ячейка, где установлена премия работника Николаева. Адрес можно указать вручную, вбив его координаты в соответствующее поле. Если вы затрудняетесь, это сделать, или считаете неудобным, то просто кликните по нужной ячейке, и адрес будет вписан в поле.

В поле «Значение» требуется указать конкретное значение премии. В нашем случае, это будет 6035,68. В поле «Изменяя значения ячейки» вписываем ее адрес, содержащей исходные данные, которые нам нужно рассчитать, то есть сумму зарплаты работника. Это можно сделать теми же способами, о которых мы говорили выше: вбить координаты вручную, или кликнуть по соответствующей ячейке.

Когда все данные окна параметров заполнены, жмем на кнопку «OK».

После этого, совершается расчет, и в ячейки вписываются подобранные значения, о чем сообщает специальное информационное окно.

Подобную операцию можно проделать и для других строк таблицы, если известна величина премии остальных сотрудников предприятия.

Решение уравнений

Кроме того, хотя это и не является профильной возможностью данной функции, её можно использовать для решения уравнений. Правда, инструмент подбора параметра можно с успехом использовать только относительно уравнений с одним неизвестным.

Допустим, имеем уравнение: 15x+18x=46. Записываем его левую часть, как формулу, в одну из ячеек. Как и для любой формулы в Экселе, перед уравнением ставим знак «=». Но, при этом, вместо знака x устанавливаем адрес ячейки, куда будет выводиться результат искомого значения.

В нашем случае, формулу мы запишем в C2, а искомое значение будет выводиться в B2. Таким образом, запись в ячейке C2 будет иметь следующий вид: «=15*B2+18*B2».

Запускаем функцию тем же способом, как было описано выше, то есть, нажав на кнопку «Анализ «что если»» на ленте», и перейдя по пункту «Подбор параметра…».

В открывшемся окне подбора параметра, в поле «Установить в ячейке» указываем адрес, по которому мы записали уравнение (C2). В поле «Значение» вписываем число 45, так как мы помним, что уравнение выглядит следующим образом: 15x+18x=46. В поле «Изменяя значения ячейки» мы указываем адрес, куда будет выводиться значение x, то есть, собственно, решение уравнения (B2). После того, как мы ввели эти данные, жмем на кнопку «OK».

Как видим, программа Microsoft Excel успешно решила уравнение. Значение x будет равно 1,39 в периоде.

Изучив инструмент Подбор параметра, мы выяснили, что это довольно простая, но вместе с тем полезная и удобная функция для поиска неизвестного числа. Её можно использовать как для табличных вычислений, так и для решения уравнений с одним неизвестным. Вместе с тем, по функционалу она уступает более мощному инструменту Поиск решения.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Подбор параметра в Excel: решаем задачки-нерешучки

Здравствуйте, уважаемые читатели! В прошлой статье мы научились моделировать результат при разных входных параметрах, выполняя анализ «что если». Сегодня же мы разберем обратную задачу, не менее частую, сложную и насущную. Пусть нам известен результат, и нужно знать, какими должны быть входные величины для его получения. То есть, нужно подобрать решение задачи. Возможно ли это в Excel? Конечно возможно, давайте разбираться!

Программа предоставляет нам два способа решения такой проблемы:

  1. Инструмент «Подбор параметра»
  2. Инструмент «Поиск решения»

Подбор параметра в Эксель

Это простой инструмент, который во многих случаях действительно выручает. Он варьирует значением в одной ячейке для получения определенного результата в другой. Как это работает?

Разберем на простом примере. Мы с Вами планируем открыть депозит с ежемесячным пополнением. Сейчас у нас на руках есть 10 тыс. у.е., но после окончания срока депозита, через 12 месяцев, хотим иметь капитал в 20 тысяч. Требуется посчитать, какую сумму нужно ежемесячно класть на депозит, чтобы через 12 месяцев накопить сумму в 20 тысяч у.е.

Вот наша таблица с расчетами:

В желтой таблице исходные данные: первый взнос, ежемесячный взнос, процентная ставка и срок вклада. В синем поле – конечный капитал, который мы посчитали с помощью функции БС.

Фактически нам нужно подобрать такое значение в ячейке В3, чтобы в В7 стало 20 000. Используем инструмент «Подбор параметра»:

  1. Жмем на ленте Данные – Работа с данными – Анализ «что если» — подбор параметра ;
  2. В открывшемся окне задаем данные для настройки:
    • Установить в ячейке: в этом параметре указываем ссылку на наше целевое значение, т.е. «Конечный капитал»;
    • Значение: здесь нужно указать то значение, которое должно быть в целевой ячейке, т.е. нужный результат вычислений. В нашем случае это 20 000;
    • Изменяя значение ячейки: Укажем ссылку на ячейку, значение которой нужно изменять, чтобы подбирать результат. В нашем примере это «Ежемесячный взнос»;

  1. Жмем Ок, программа будет искать решение. Когда оно будет найдено, Excel сообщит о завершении подбора. Нажимаем Ок в окне, чтобы принять найденное значение и записать его в ячейку, или Отмена, чтобы оставить все как было.

В нашем примере все сработало отлично, и мы узнали, что для получения капитала в 20 тыс, нужно ежемесячно добавлять на депозит по 736,55 у.е.

Иногда случается, что поиск решения не дал результата, тогда нужно проверить всё ли правильно:

  1. Первым делом удостоверьтесь, что целевая ячейка зависит от того значения, которое мы изменяем. Если итоговая формула не ссылается на изменяемое значение – восстановите эту зависимость и повторите поиск;
  2. Пробуем поставить в изменяемой ячейке значение ближе к искомому, очень часто это помогает;
  3. В Экселе ограничено количество итераций для подобного поиска. Возможно, этого количества не хватило, чтобы найти решение. Пробуем увеличить количество итераций. Для этого жмем Файл – Параметры – Формулы , а там в группе команд «Параметры вычислений» увеличьте предельное число итераций.

  1. Осмыслите вычисления, которые предлагаете произвести программе. Точно ли заданные Вами параметры имеют решение? Если не имеют – сделайте их корректными.

Обычно этих шагов хватает, чтобы найти значение, удовлетворяющее наш запрос.

Инструмент «Поиск решения»

Как Вы убедились, подбор параметра отлично и безотказно работает практически во всех случаях. Но у него есть недостаток – он манипулирует лишь одним значением для изменения результата. А что, если нужно построить более сложную систему вычислений? Тогда используем «Поиск решения».

И снова рассмотрим на примере. Спланируем производственный процесс на месяц для получения максимальной прибыли. Вот наша таблица заготовка:

В таблице имеем такие поля:

  1. Минимальная партия – минимальное количество товара, которое нужно произвести для обслуживания уже существующих заказов;
  2. Максимальная партия – наибольшее количество товара, которое можно произвести, исходя из запасов сырья
  3. Норма рабочего времени – количество человекочасов, необходимых для производства одного изделия;
  4. Затраты рабочего времени – количество времени, которое будет затрачено на производство всего запланированного. Пусть у нас работает 20 работников по 8 часов 22 дня в месяце. Тогда сумма по этому полю должна составить 3520 ч.
  5. Себестоимость – стоимость производства одной единицы продукции
  6. Цена реализации – рыночная стоимость одной единицы продукции
  7. Валовая прибыль – прибыль, которая будет получена от реализации изготовленного товара.

Для упрощения, будем считать, что спрос на товар выше производственных возможностей, и всё произведенное будет продано. Так сколько чего нам нужно произвести, чтобы получить наибольшую выгоду, а персонал трудился ровно 3520 ч? Запускаем «Поиск решения»:

Читать еще:  Виды формул и функций в excel

  1. Ищем на ленте Данные – Анализ – Поиск решения . Кликаем, откроется окно настройки;
  2. В поле «Оптимизировать целевую функцию» задаем ссылку на сумму по столбцу «Валовая прибыль»;
  3. В поле «До» выбираем «Максимум». В других случаях можно выбрать «минимум», или задать какое-то конкретное значение;
  4. В списке «Изменяя ячейки переменных» указываем все строки столбца «Производим»
  5. Далее нужно внести все оговоренные выше ограничения. Для этого жмем «Добавить» и в открывшемся окне выбираем ссылки на ячейки и параметры их ограничения:

Вносим все оговоренные ограничения, они отобразятся в списке окна настройки:

  1. Суммарные затраты времени должны равняться 3520 часов;
  2. Производимое количество больше или равно минимальной партии
  3. Производимое количество меньше или равно максимальной партии
  4. Производимое количество должно быть целым числом

  1. Выбираем метод решения в соответствии с рекомендациями разработчиков внизу окна настроек. Мы выберем линейный метод. Жмем «Найти решение», по завершению поиска программа сообщает о результате.

В этом окне можно подтвердить внесение изменений в ячейки, либо вернуться к изначальному набору данных. Так же, отличным решением будет сохранить результаты поиска как сценарий . Позднее их можно будет восстановить и построить соответствующие отчеты.

Видим, что программа оптимизировала наши производственные процессы и направила в русло получения максимальной прибыли. При этом, у нас не будет переработок и недоработок. Таки образом, можно решать многие задачи планирования и проектирования бизнес-процессов.

Экспериментируя с многочисленными настройками инструмента, можно детально управлять процессом поиска. На самом деле, «Поиск решения» — очень функциональная и многогранная надстройка, познать все азы которой можно на сайте разработчика: www.solver.com.

Кстати, если Вы не нашли на ленте этот инструмент – не отчаивайтесь, его просто нужно подключить. Для этого нажмите Файл – Параметры – Надстройки . Внизу в раскрывающемся списке «Управление» выберите «Надстройки Excel» и нажмите «Перейти». В открывшемся окне поставьте галку напротив «Поиск решения» и нажмите Ок. Вот и всё, он сразу же появится ленте!

Вот такие существуют способы подгонки результатов, о которых мало кто знает и мало кто пользуется. Тем не менее, навыки работы с ними делают нашу жизнь проще, теперь не нужно вручную перебирать десятки или сотни значений, чтобы получить нужный результат!

Если у Вас что-то не получилось – задавайте свои вопросы в комментариях, будем разбираться вместе. Если все вышло — сбросьте другу ссылку на эту статью. Пусть и он использует Эксель в полной мере!

Экспериментируйте, а я отправляюсь писать следующий пост. До новых встреч на страницах блога officelegko.com!

Добавить комментарий Отменить ответ

4 комментариев

Добрый день, Александр!

Есть задача которую я не могу понять с помощью какой формулы описать решение, причем прописать эти формулы в гугл таблице, но думаю суть та же будет если сделать это и в эксели
если в кратце: то например я знаю что мне надо накопить 20000, то если откладывать каждый месяц по 10 000 то через 2 месяца я добъюсь цели, как это описать формульно чтобы эксель показал что в зависимости от того сколько накапливается в месяц я смогу накопить 20000? чтобы программа показала мне время через которое я накоплю средства есть столбец месяцев с суммами того что накопил в этих столбцах при этом там есть и пустыми суммы за декабрь например. Просто бьюсь уже 5 дней не могу понять возможно ли решение для такой задачи или нет. ссылка на файл о чем речь :
https://docs.google.com/spreadsheets/d/1kyP2HwB8WFeAqJkkANC9TxQCsIv3K-44Wfe3xabfQeA/edit?usp=sharing

Даниил, здравствуйте. Уточните пожалуйста вопрос.Вы хотите, чтобы программа считала срок исходя из какого-то обязательного ежемесячного платежа, или из средних ежемесячных накоплений за какой-то период?

Исходя из средних ежемесячных накоплений( суммы которых могут быть разными за месяцы) за какой либо период времени

Даниил, в Excel есть функция, которая считает средние значения — СРЗНАЧ. Тогда формула расчета количества месяцев будет такая: =<Остаток суммы>/СРЗНАЧ<Диапазон с данными по ежемесячному внесению средств>). Естественно, в фигурных скобках я указал описания, а вы укажите соответствующие ссылки на ячейки и диапазоны ячеек

ПОИСК РЕШЕНИЯ СРЕДСТВАМИ MS EXCEL

Цель работы: изучить инструменты анализа MS Excel Подбор параметра и Поиск решения; приобрести навыки их применения для решения прикладных задач.

Методические указания

Команда«Подбор параметра» и надстройка «Поиск решения» являются основными инструментам анализа данных.

Подбор параметра служит для определения входной величины, обеспечивающей определенное значение функции. С помощью команды «Подбор параметра» можно определить неизвестное значение, которое будет давать желаемый результат. Эта команда является удобной для решения задач, которые имеют точное целевое значение, зависящее от одного неизвестного параметра. MS Excel находит ответ с помощью последовательных операций и ему достаточно указать целевую ячейку (ее желаемое значение) и изменяемую ячейку – параметр, влияющую на содержимое целевой ячейки. При этом ячейка – это параметр, который должен содержать значение, но не формулу, и влиять на результат, который требуется получить.

Для вызова Подбора параметра следует выделить ячейку с формулой, которая должна принять заданное значение и выбрать команду Сервис–Подбор параметра (рис. 9.1).

Рис. 9.1. Диалоговое окно Подбор параметра

В диалоговом окне Подбор параметрав поле Значение ввести величину, которую необходимо получить в целевой ячейке, в поле Изменяя значение ячейки ввести ссылку на ячейку – параметр и нажать кнопку ОК. При этом откроется диалоговое окно Результат подбора параметра и начнется итерационный процесс поиска решения, каждый шаг которого дает следующее приближение к искомой величине. После того, как решение найдено нажмите кнопку ОК или Отмена, если ответ не устраивает. При использовании «Подбора параметра» флажок «Точность, как на экране» (Сервис – Параметры – Вычисления) должен быть снят.

Пример 1. Используя «Подбор параметра», определите при каких значениях аргумента функция , примет значение 0,5.

Решение. Выделим ячейку с формулой, которая должна принять значение 0,5, затем выберем команду Сервис – Подбор параметра.

Для нахождения значения аргумента в диалоговом окне Подбор параметра введем ссылки на соответствующие ячейки (рис. 9.2) и нажмем кнопку ОК.

Рис. 9.2. Пример нахождения аргумента функции

В результате получим, что решение будет найдено (рис. 9.3) и аргумент примет значение (рис. 9.4) равное 2,249956.

Рис. 9.3. Результат подбора параметра

Рис. 9.4. Полученное значение аргумента X

Существует множество задач, которые нельзя решить с помощью команды «Подбор параметра». Формулировка таких задач может представлять собой систему уравнений с несколькими неизвестными и набор ограничений для решения. В этом случае необходимо использовать надстройку «Поиск решения».

Формулировки некоторых задач могут представлять собой системы уравнений с несколькими неизвестными и набор ограничений на решения. Обычными задачами, решаемыми с помощью надстройки «Поиск решения», являются:

1. Ассортимент продукции. Максимизация выпуска товаров при ограничениях на сырье для производства этих товаров.

2. Штатное расписание. Составление штатного расписания для достижения наилучших результатов при наименьших расходах.

3. Планирование перевозок. Минимизация затрат на перевозку товаров при условии удовлетворения потребностей покупателей.

4. Составление смеси. Получение заданного качества смеси при наименьших расходах.

Эти задачи имеют три свойства:

1. Наличие целевой функции (ЦФ).

2. Ограничения, выражающиеся, как правило, в виде неравенств.

3. Наличие набора входных значений-переменных, непосредственно или косвенно влияющих на ограничения и на оптимизируемые величины.

Одним из подходов к решению таких задач является использование надстройки «Поиск решения» из пакета электронных таблиц Microsoft Excel (Сервис – Поиск решения). Диалоговое окно Поиск решения представлено на рис. 9.5.

Рис. 9.5. Диалоговое окно Поиск решения

В поле Установить целевую ячейку необходимо указать адрес или собственное имя ячейки, содержащей формулу для вычисления целевой функции. ЦФ может быть равной максимальному значению, минимальному значению или конкретному указанному значению.

В поле Изменяя ячейки следует задать адреса или имена ячеек, содержащих искомые значения. Ячейки должны влиять (прямо или косвенно) на значение целевой функции. Допускается до 200 изменяемых ячеек. Кнопка Предположить позволяет автоматически определить все ячейки, влияющие на ЦФ.

В поле Ограничения с помощью кнопок Добавить, Изменить, Удалить надо сформировать список условий.

Кнопка Выполнить инициализирует процесс поиска оптимального решения. Чрезмерно длительные вычисления можно прервать клавишей Esc.

Кнопка Параметры из диалогового окна Поиск решения позволяет изменять ряд настроек (рис. 9.6), влияющих на процесс поиска, что дает возможность в некоторых случаях найти более точное решение, либо получить решение задачи, которое при параметрах, заданных по умолчанию не может быть найдено.

Рис. 9.6. Параметры Поиска решения

Можно настроить следующие параметры поиска решения:

1. Максимальное время – это время в секундах, которое может быть затрачено на поиск решения. Максимально допустимое значение – 32767.

2. Предельное число итераций (шагов) – количество действий (вычисление очередного значения и проверка, насколько оно подходит в качестве ответа), которые могут быть сделаны. Максимально допустимое значение – 32767.

3. Относительная погрешность задает, насколько близко друг к другу расположены два последовательных приближения. Задается числом в диапазоне от 0 до 1.

4. Допустимое отклонение используется в случае целочисленных ограничений на изменяемые ячейки. Определяет допуск отклонения полученного ответа от возможного наилучшего решения. Задается в процентах. Увеличение допустимого отклонения приводит к уменьшению времени поиска.

5. Сходимость – относительное изменение значения в целевой ячейке за последние пять шагов. Если эта величина становится меньше указанного числа, поиск прекращается. Задается числом в диапазоне от 0 до 1. Параметр применим только к нелинейным задачам. Уменьшение значения в поле сходимость (улучшение сходимости) приводит к увеличению времени поиска оптимального решения.

Читать еще:  Как переносить строки в ячейке excel

6. Линейная модель приводит к использованию методов линейного программирования (симплекс-метода), что ускоряет процесс поиска оптимального решения для линейных задач оптимизации.

7. Неотрицательные значения позволяет задать нулевую нижнюю границу для тех изменяемых ячеек, для которых она не была указана в поле Ограничение.

8. Автоматическое масштабирование приводит к автоматической нормализации входных и выходных значений, существенно различающиеся по величине.

9. Показывать результаты итераций выводит промежуточный результат и делает паузу после каждого шага вычисления.

10. Оценки – служит для выбора метода экстраполяции, используемого для получения исходных оценок значений переменных в каждом одномерном поиске. Линейная используется для линейной экстраполяции вдоль касательного вектора. Квадратичная дает лучшие результаты при решении нелинейных задач.

11. Разности выбирает метод численного дифференцирования, который используется для вычисления частных производных целевых и ограничивающих функций. (прямые производные и центральные производные). Прямые производные используются для гладких непрерывных функций, где скорость изменения ограничений относительно невысока. Центральные – для функций, имеющих разрывную производную. Данный способ требует больше вычислений, однако его применение может быть оправданным тогда, когда выдается сообщение о том, что получить более точное решение не удается.

12. Метод поиска служит для указания алгоритма оптимизации. Метод Ньютона требует больше памяти, но при этом выполняется меньше итераций, чем в методе сопряженных градиентов. Метод сопряженных градиентов следует использовать, если задача достаточно велика и необходимо экономить память, а также, если итерации дают слишком малое отличие в последовательных приближениях.

Математические модели могут быть сохранены и прочитаны с помощью кнопок Сохранить модель и Загрузить модель(см. рис. 9.6). Это позволяет хранить на рабочем листе более одной модели оптимизации.

При успешном окончании поиска решения можно сохранить найденное решение, восстановить исходные значения изменяемых ячеек, сформировать один или несколько типов отчетов (рис. 9.7).

Рис. 9.7. Результаты поиска оптимального решения

Существует возможность сохранить найденное решение, найти прочие решения с другими исходными данными или параметрами задачи, а затем сравнить их с помощью Диспетчера сценария (кнопка Сохранить сценарий).

Пример 2. Предприятие выпускает 3 вида изделий (А, Б, В), для изготовления которых используется фрезерное, токарное, сварочное и шлифовальное оборудование. Удельные затраты рабочего времени для каждого типа оборудования, общий фонд рабочего времени, а также прибыль от реализации единицы продукции каждого вида приведены в табл. 9.1. Требуется так спланировать объемы выпуска изделий, чтобы прибыль от их реализации была максимальной.

Прибыль от реализации единицы продукции каждого вида

Используем поиск решений в Excel 2010 для решения сложных задач

Автор: Леонид Радкевич · Опубликовано 21.12.2013 · Обновлено 06.12.2016

Значительная часть задач, которые решаются с помощью электронных таблиц, предполагают, что для обнаружения нужного результата у пользователя уже есть хоть какие-то исходные данные. Однако Exсel 2010 располагает необходимыми инструментами, с помощью которых можно решить эту задачу наоборот – подобрать нужные данные, чтобы получить необходимый результат.

«Поиск решения» и является одним из таких инструментов, максимально удобных для «задач оптимизации». И если ранее вам еще не приходилось его использовать, то сейчас самое время исправить это.

Итак – начинаем с установки данной надстройки (поскольку самостоятельно она не появится). К счастью сейчас сделать это можно достаточно просто и быстро – открываем меню «Сервис», а уже в нем «Надстройки»

Останется только в графе «Управление» указать «Надстройки Excel», а после нажать кнопочку «Перейти».

После этого несложного действия кнопка активации «Поиска решения» будет отображаться в «Данных». Как и показано на картинке

Давайте рассмотрим, как правильно используется поиск решений в Excel 2010, на нескольких простых примерах.

Пример первый.

Допустим, что вы занимаете пост начальника крупного отдела производства и необходимо правильно распределить премии сотрудникам. Допустим, общая сумма премий составляет 100 000 рублей, и необходимо, чтобы премии были пропорциональны окладам.

То есть, сейчас нам необходимо подобрать правильный коэффициент пропорциональности, чтобы определить размер премии относительно оклада.

В первую очередь необходимо быстро составить (если ее еще нет) таблицу, где будут хранится исходные формулы и данные, согласно которым и можно будет получить желаемый результат. Для нас этот результат – суммарная величина премии. А сейчас внимание – целевая ячейка С8 должна быть с помощью формул связана с искомой изменяемой ячейкой под адресом Е2. Это критично. В примере мы связываем их используя промежуточные формулы, которые и отвечают за высчитывание премии каждому сотруднику (С2:С7).

Теперь можно активировать «Поиск решений». Откроется новое окошко, в котором нам необходимо указать необходимые параметры.

Под «1» обозначена наша целевая ячейка. Она может быть только одна.

«2» — это возможные варианты оптимизации. Всего можно выбрать «Максимальное», «Минимальное» или «Конкретное» возможные значения. И если вам необходимо именно конкретное значение, то его нужно указать в соответствующей графе.

«3» — изменяемых ячеек может быть несколько (целый диапазон или же отдельно указанные адреса). Ведь именно с ними и будет работать Excel, перебирая варианты так, чтобы получилось значение, заданное в целевой ячейке.

«4» — Если понадобиться задать ограничения, то стоит воспользоваться кнопкой «Добавить», но мы это рассмотрим чуть позже.

«5» — кнопка перехода к интерактивным вычислениям на основе заданной нами программы.

Но теперь вернемся к возможности изменять наше задание, воспользовавшись кнопкой «Добавить». Данный этап является довольно ответственным (не менее чем построение формул), поскольку именно ограничение позволяют получить правильный результат на выходе. Здесь все сделано максимально удобно, так что задать их вы сможете не только для всего диапазона сразу, но и для определенных ячеек.

Для этого можно использовать ряд определенных (и знакомых всем пользователям Excel 2010) знаков «=», «>=», « 3 досок, а модель «В» — на 1 м 3 больше (то есть – 4). От своих поставщиков вы за неделю получаете максимум 1700 м 3 досок. При этом модель «А» создается за 12 минут работы станка, а «В» — за 30 минут. Всего в неделю станок может работать не более 160 часов.

Вопрос – сколько всего изделий (и какой модели), должна выпускать фирма за неделю, чтобы получить максимально возможную прибыль, если полочка «А» дает 60 рублей прибыли, а «В» — 120?

Поскольку порядок действия известен, то начинаем создавать необходимую нам таблицу с данными и формулами. Расположение ячеек, как и ранее, вы можете установить на свое усмотрение. Или же воспользоваться нашим

Любым удобным способом запускаем наш «Поиск решений», вводим данные, производим настройку.

Итак, рассмотрим то, что мы имеем. В целевой ячейке F7 содержится формула, которая и рассчитает прибыль. Параметр оптимизации устанавливаем на максимум. Среди изменяемых ячеек у нас значится «F3:G3». Ограничения – все обнаруженные значения должны быть целыми числами, неотрицательными, общее количество потраченного машинного времени не превышает отметку 160 (наша ячейка D9), количество сырья не превышает 1700 (ячейка D8).

Конечно, в этом случае можно было не указывать адреса ячеек, а напрямую прописать необходимые цифровые значения, однако если использовать адреса, то изменения ограничений можно будет проводить и в таблице, что поможет рассчитывать прибыль этого предприятия в будущем, при смене исходных данных.

Активируем программу, и она подготавливает решение.

Впрочем, это не единственное решение и у вас вполне может выскочить другой результат. Это может произойти даже в том случае, если все данные были указаны верно и ошибок в формулах тоже не было

Да. Это может произойти даже в том случае, если мы сказали программе искать целое число. И если это вдруг произошло, то необходимо просто провести дополнительную настройку «Поиска решений». Открываем окно «Поиска решений» и входим в «Параметры».

Наш верхний параметр отвечает за точность. Чем он меньше, тем выше точность и в нашем случае это значительно повышает шансы получить целое число. Второй параметр («Игнорировать целочисленные ограничения») и дает ответ на вопрос, как мы смогли получить такой ответ с тем, что в запросе явно указали целое число. «Поиск решений» просто проигнорировал это ограничение в связи с тем, что так ему сказали расширенные настройки.

Так что будьте предельно внимательны в будущем.

Третий и, пожалуй, последний пример. Попробуем минимизировать затраты транспортной компании используя поиск решений в Excel 2010.

Итак, строительная компания дает заказ на перевозку песка, который берется от 3 поставщиков (карьеров). Его необходимо доставить 5 разным потребителям (которыми выступают строительные площадки). Стоимость доставки груза включена в себестоимость объекта, так что наша задача обеспечить доставку груза на стройплощадки с минимальными затратами.

Мы имеем – запас песка в карьере, потребность стройплощадок в песке, затрату на транспортировку «поставщик-потребитель».

Необходимо найти схему оптимальной перевозки груза (куда и откуда), при которой общая затрата на перевозку была бы минимальной.

Серые ячейки нашей таблицы содержат формулы суммы по столбцам и строкам, а целевая ячейка – формула для общего подсчета затраты на доставку груза. Запускаем наш «Поиск решения» и вносим необходимые настройки

Читать еще:  Перенос на следующую строку в excel

После этого приступаем к поиску решения этой задачки

Впрочем, не будем забывать, что достаточно часто транспортные задачи могут быть усложнены некоторыми дополнительными ограничителями. Допустим, возникло осложнение на дороге и теперь из карьера 2 просто технически невозможно доставить груз на стройплощадку 3. Чтобы учесть это, необходимо просто дописать дополнительное ограничение «$D$13=0». И если теперь запустить программу, то результат будет иным

Напоследок осталось сказать только о выборе метода решения. И если задачка действительно очень сложная, то чтобы получить необходимый результат, скорее всего, понадобиться подобрать необходимый метод решения.

Вот и все по данному вопросу.

Мы выполнили поиск решений в Excel 2010 — для решения сложных задач

Вернуться в начало статьи Используем поиск решений в Excel 2010 для решения сложных задач

Читайте также:

Как закрепить область в excel 2010

Автор: Леонид Радкевич · Published 08.01.2013 · Last modified 06.12.2016

Используем автофильтр в Excel

Автор: Леонид Радкевич · Published 21.12.2013 · Last modified 29.03.2019

Проводим анализ данных в Excel 2010

Автор: Леонид Радкевич · Published 14.12.2013 · Last modified 06.12.2016

Трансцендентные уравнения? «Подбор параметра» в Excel!

Нелинейные, трансцендентные уравнения функции одной переменной – это уравнения вида f (x) = 0, в которых нельзя найти алгебраическими методами корни. Функция f (x) – это, как правило, достаточно сложная и громоздкая функция, содержащая в своем составе.

. тригонометрические, логарифмические, степенные и иные нелинейные функции с различной глубиной вложенности. Например: f (x) = sin (3,14^x) + cos (x) = 0. Уравнения такого вида решаются численными методами.

В этой статье я постараюсь доступно и кратко рассказать и показать на примерах, как и когда такие задачи возникают и как их сегодня быстро и просто можно решать в Excel.

Чуть-чуть истории и теории.

Вы задумывались когда-нибудь — откуда и зачем в головах людей, живших в XVI…XVII веках, родились понятия дифференциалов, производных, интегралов? Объяснение, в общем-то, достаточно простое и понятное – эти ученые искали аналитические пути решения прикладных практических задач. И успешно находили.

Мне сегодня видится приблизительно такая «лестница» с качественными «ступенями инструментов» математики для решения практических и научных задач, которую изобрело человечество:

1. Арифметика — сложение, вычитание, умножение, деление.

2. Алгебра – применение элементарных функций (степенной, логарифмической, тригонометрической, …) и алгебраических уравнений функции одной переменной.

3. Гауссовские системы линейных уравнений.

4. Численные методы решения трансцендентных уравнений.

5. Численные методы решения систем трансцендентных уравнений функций нескольких переменных.

6. Дифференцирование и интегрирование функций одной переменной.

7. Дифференцирование и интегрирование функций нескольких переменных.

8. Системы дифференциальных и интегральных уравнений.

9. Масса разнообразных новых и старых специальных методик и подходов мне не известных и известных, но, безусловно, существующих и работающих.

Предлагаю остановиться и разобраться с достаточно высокой четвертой ступенью «лестницы».

Для численного решения нелинейных уравнений успешно применяются: метод половинного деления, метод простых итераций, метод хорд, метод касательных Ньютона, комбинированный метод секущих-хорд на основе итерационной формулы Ньютона. Для чего ученые-математики придумали множество различных методов решения трансцендентных уравнений? Они старались упростить и ускорить процесс расчетов. Надо помнить и понимать, что у них компьютеров не было, и расчеты выполнялись вручную.

Каждый из методов имеет свои достоинства и недостатки — они подробно описаны в литературе, и углубляться в них мы не будем. Скажу только, что из вышеперечисленных методов мне на практике довелось использовать все. При решении различных (в основном геометрических и теплотехнических) задач по разным причинам было удобно использовать то один, то другой подход. Метод Ньютона хорош своей быстрой сходимостью и простотой формулы. Комбинированный метод секущих-хорд на основе итерационной формулы Ньютона не требует нахождения производных, быстро «сходится», и главное – не требует анализа функции на сходимость. Метод половинного деления медленно сходится, но не требует никакого предварительного анализа функции.

Трансцендентные уравнения. Два метода решения в Excel.

Если у вас на компьютере нет программы MS Excel, то расчеты можно выполнить в программе OOo Calc из бесплатного пакета Open Office.

Задач, которые требуют для получения ответа составления и решения трансцендентных уравнений, вокруг нас очень много. Это — задачи и физики, и теплотехники, и астрономии, и элементарной геометрии в обычной жизни… Инженерам-конструкторам и программистам в повседневной работе необходимо уметь составлять и быстро решать численными методами нелинейные уравнения. На мой взгляд — это один из критериев профессионализма. Более того, уравнения, которые решаются аналитически, сегодня иногда гораздо проще и быстрее при наличии вычислительной техники решить численными методами, поэтому нужно уметь это делать.

Вычисление угла зацепления зубчатой передачи методом Ньютона (методом касательных)

Рассмотрим пример из статьи «Расчет геометрии зубчатой передачи». Необходимо найти угол зацепления зубчатой передачи atw . Я обещал в той статье рассказать, как это делается. Выполняю обещание.

Если расстояние между центрами колеса и шестерни не задано, то угол зацепления можно вычислить путем решения трансцендентного уравнения:

inv ( atw )=tg ( atw ) — atw =2* xs *tg ( a )/( z2 + T * z1 )+ tg ( at ) — at

Подставив данные из примера, рассмотренного в вышеупомянутой статье, получим после преобразований следующее уравнение:

inv ( atw )=0,020910

f ( atw )=tg ( atw )— atw -0,020910=0

Используем метод Ньютона, потому что взять производную представленной выше функции элементарно просто, а итерационная формула очень проста и компактна:

f’( atw )=1/(cos ( atw ))^2—1

atw (i+1) = atw i — f ( atw ) i/ f’( atw ) i

Открываем файл Excel и начинаем работу.

Исходные данные будем традиционно писать в ячейки со светло-бирюзовой заливкой. Результаты расчетов будем считывать в ячейках со светло-желтой заливкой.

1. Инволюту угла зацепления inv( atw ) заносим

в ячейку D3: 0,020910

2. Значение угла зацепления в нулевом приближении atw в радианах записываем

3. Итерационную формулу atw (i+1)= atw i f( atw )i/ f’( atw )i заносим

в D5: =D4- (TAN (D4) -D4-$D$3)/(1/(COS (D4))^2-1) =0,591706

atw 1= atw 0- (tg ( atw 0) — atw 0- inv ( atw ))/(1/(cos ( atw 0))^2-1)

и копируем в ячейки D6… D14

4. Видим, что уже после шестой итерации угол зацепления atw в радианах вычислен с нулевой абсолютной и относительной ошибкой:

atw =D13- (TAN (D13) -D13-$D$3)/(1/(COS (D13))^2-1) =0,389140

Решение найдено, расчет в Excel завершен!

Решение задачи ландшафтного дизайна с помощью сервиса «Подбор параметра» в Excel

Задача:

Вдоль отмостки стены дома длиной 14 метров необходимо разбить цветник в виде сегмента круга площадью ровно 16 квадратных метров. На сколько метров цветник будет отстоять от края отмостки по центру стены? Каким радиусом необходимо выполнить границу цветника?

1. Длину отмостки стены дома — хорды сегмента круга x в метрах записываем

в ячейку D17: 14,000

2. Площадь цветника – сегмента круга S в квадратных метрах вписываем

в D18: 16,000

3. Предположительное произвольное (не нулевое) значение центрального угла сегмента a в радианах пишем

Трансцендентное уравнение a / sin( a /2 ) -2*cos ( a /2) — (8* S / x ^2) *sin( a /2)=0 вводим

в объединенную ячейку E19F19: =D19/SIN (D19/2) -2*COS (D19/2) — (8*D18/D17^2)*SIN (D19/2)

Включаем сервис «Подбор параметра» в Excel: «Сервис» – «Подбор параметра». Пишем в появившемся окне все как на рисунке слева и нажимаем кнопку OK.

В появившемся новом окне видим, что решение найдено, снова нажимаем на кнопку OK.

Считываем искомое значение центрального угла сегмента a в радианах

в D19: 0,950057

При этом видим, что значение трансцендентного уравнения равно нулю; считываем

в объединенной ячейке E19F19: =D19/SIN (D19/2) -2*COS (D19/2) — (8*D18/D17^2)*SIN (D19/2) =0

4. Радиус наружной границы цветника – радиус сегмента круга r в метрах рассчитывается

в D20: =D17/2/SIN (D19/2) =15,305

r = x /2/sin( a /2)

5. Максимальная ширина цветника – высота сегмента круга h в метрах рассчитывается

в ячейке D21: =D20*(1-COS (D19/2)) =1.695

h = r *(1- cos( a /2))

Ответы получены, вторая задача успешно решена!

Я не приводил вывода использованных формул потому, что это не по теме поста, и, думаю, с геометрией и тригонометрией вы легко разберетесь. Будут вопросы – обращайтесь.

Чтобы получать информацию о выходе новых статей вам нужно подписаться на анонсы в окне, расположенном вверху страницы. Введите адрес своей электронной почты и нажмите на кнопку «Получать анонсы статей». С этого момента к вам на почтовый ящик будет приходить небольшое уведомление о появлении на моем блоге новой статьи.

Краткие выводы

1. Итерационными численными методами удобно и быстро можно решать трансцендентные уравнения и громоздкие нелинейные алгебраические.

2. При написании расчетных модулей программ в Excel, если нежелательны лишние остановки по ходу вычислений, можно использовать вставки блоков с классическими методами решения нелинейных уравнений или макросов с вызовом инструмента «Подбор параметра».

3. Использование инструмента «Подбор параметра» в Excel является сегодня, безусловно, наиболее оптимальным и эффективным методом решения нелинейных, трансцендентных уравнений функций одной переменной, а также проведения анализа типа «Что будет? Если…».

Умение применять в работе сервис «Подбор параметра» существенно повышает ваш уровень, как специалиста вообще, так и как пользователя Excel – в частности.

Буду очень рад увидеть ваши комментарии к статье, уважаемые читатели!

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector