Ssd в качестве кэша
Использование твердотельных накопителей SSD для повышения производительности СХД
- Ключевые слова :
- ИТ-инфраструктура
- SSD
- Гибридные массивы
- Кэширование на SSD
- Многоуровневое хранение
Как известно, твердотельные накопители SSD, получающие все более широкое распространение, намного превосходят по производительности традиционные жесткие диски HDD. Однако их стоимость значительно выше, и поэтому использование одних лишь SSD в качестве корпоративного пула ресурсов хранения данных оказывается для большинства компаний невыгодным.
«Лучшей практикой» для многих корпоративных заказчиков является применение гибридных систем хранения SSD/HDD. Такое решение позволяет воспользоваться преимуществами обоих типов носителей — большой емкостью HDD и высоким быстродействием SSD в IOPS (количество операций ввода-вывода в секунду), — но при этом остается экономически привлекательным.
В гибридной системе хранения SSD/HDD основная емкость представлена недорогими жесткими дисками, а небольшой пул для «горячих», часто используемых данных — флеш-памятью. В рационально спроектированной гибридной СХД при небольшом количестве накопителей SSD достигается значительное ускорение операций с основным пулом хранения данных.
РЕАЛИЗАЦИЯ ГИБРИДНЫХ СХД
На практике применяются два основных метода ускорения — кэширование данных и их многоуровневое хранение (tiering). В обоих случаях для увеличения производительности ввода-вывода используется концепция «горячих» данных, но в действительности это совершенно разные подходы.
При кэшировании один или несколько накопителей SSD служат в качестве кэша для виртуального пула хранения, где основное хранилище реализовано на жестких дисках. SSD в этом случае не предоставляют дополнительной емкости — это невидимая для приложений «прослойка», увеличивающая производительность ввода-вывода. Информация всегда передается в основной пул хранения, однако «горячие» данные копируются и в кэш-память (на SSD). При последующих обращениях к этим или рядом размещенным данным вместо основного пула хранения используется кэш-память, за счет чего и достигается существенный выигрыш в производительности.
При многоуровневом хранении данные соответствующим образом сортируются и помещаются на уровень SSD или HDD (уровней может быть больше двух): «горячие» отправляются на флеш-память, а реже используемые — на жесткие диски.
ЧТО ЛУЧШЕ?
Многоуровневое хранение не предполагает избыточности данных, поэтому реализация RAID в этом случае становится более сложной — требуется покупка дополнительных SSD. Сама сортировка данных и распределение их по уровням негативно сказываются на производительности. Такие системы должны управлять данными, которые из «горячих» со временем превращаются в «холодные». Ввиду отсутствия избыточности, часто используемые данные нужно перемещать в основной пул, как только они становятся менее полезными. Эти фоновые процессы потребляют IOPS и сказываются на скорости операций ввода-вывода во время таких перемещений. С наибольшей эффективностью многоуровневое хранение функционирует в тех случаях, когда соответствующие алгоритмы адаптированы к требованиям и задачам заказчика. Для достижения идеальной производительности нужны постоянный мониторинг и подстройка алгоритмов.
В отличие от сложного многоуровневого хранения, кэширование на SSD в существующих СХД реализовать проще. Гибридные системы хранения с кэшированием на SSD не требуют дополнительного администрирования, а приложение воспринимает такую систему точно так же, как и любую другую сетевую СХД, только работает она намного быстрее. Реализация RAID и защита данных у нее аналогичные, и покупать для этого дополнительные SSD не потребуется.
На SSD помещаются копии данных, поэтому осуществлять их фоновое перемещение в основной пул хранения не придется. Не будет и связанных с этим издержек, влияющих на производительность. Кэширование на SSD необходимо, впрочем, подстраивать под конкретные корпоративные приложения, но простота системы кэширования означает, что администрирование системы будет значительно менее сложным, чем у сопоставимой СХД с многоуровневым хранением.
Издержки, связанные с инсталляцией СХД с многоуровневым хранением и ее сопровождением, будут оправданными только в очень крупных организациях, которые могут позволить себе как установку стоечных модулей SSD для организации выделенного пула флеш-памяти, так и увеличение штата системных администраторов для управления СХД. Для большинства компаний, не имеющих экстремально крупных пулов хранения, предпочтительным вариантом ускорения систем хранения будет кэширование на SSD.
ПРОБЛЕМА ЗАПИСИ
Будучи более производительными, накопители SSD имеют определенные ограничения на запись данных, и это нужно иметь в виду при выборе метода ускорения СХД. Хотя хранящиеся на флеш-накопителях данные можно считывать бесконечное число раз, их ячейки допускают ограниченное число циклов записи. Эта проблема осложняется необходимостью удалять весь блок даже при записи данных меньшего объема. Для ее решения в современных контроллерах флеш-памяти применяются методы распределенной записи, кэширования операций записи и фоновая «сборка мусора». Однако запись на SSD остается более сложной операцией, чем чтение. Слишком частое выполнение записи в одни и те же ячейки может привести к быстрой деградации флеш-памяти.
Если в клиентской системе операции записи на SSD можно распределить таким образом, что каждый отдельный блок носителя будет перезаписываться достаточно редко, то в гибридной СХД уровень SSD активно задействуется для хранения «горячих» данных всего дискового пула. При кэшировании и многоуровневом хранении операции с SSD станут очень интенсивными, и преимущества алгоритмов предотвращения износа носителя будут сведены на нет. Это означает, что в обоих случаях (кэширование и многоуровневое хранение) уровень SSD лучше всего задействовать для ускорения операций чтения, а не чтения и записи.
РЕАЛИЗАЦИЯ КЭШИРОВАНИЯ НА SSD
В системе с кэшированием на SSD операция ввода-вывода производится обычным образом: вначале выполняются чтение-запись на HDD. Если эта операция инициирует кэширование, данные также копируются с HDD на SSD. Тогда при любой последующей операции чтения того же логического блока он считывается непосредственно с SSD, что увеличивает общую производительность и уменьшает время отклика. Уровень SSD играет роль невидимого ускорителя ввода-вывода, и при любом отказе SSD данные все равно будут доступны в основном пуле хранения, защищаемом с помощью RAID.
НАПОЛНЕНИЕ КЭШ-ПАМЯТИ
Кэш, как и основная емкость хранения, разбивается на группы секторов равного размера. Каждая группа называется кэш-блоком, а каждый блок состоит из подблоков. Размер кэш-блока можно настраивать под конкретное приложение, например СУБД или Web-сервер.
Считывание данных с HDD и их запись в SSD называют наполнением кэш-памяти. Эта фоновая операция обычно выполняется вслед за основной операцией чтения или записи. Поскольку назначение кэша — хранение часто используемых данных, к его наполнению должна приводить не каждая операция ввода-вывода, а только та, для которой пороговое значение счетчика оказывается превышенным. Обычно счетчики наполнения применяются при чтении и при записи.
Таким образом, с каждым блоком основной емкости хранения ассоциируются счетчики чтения и записи. Когда приложение считывает данные из кэш-блока, значение его счетчика чтения увеличивается. Если данные в кэш-памяти отсутствуют, а значение счетчика чтения больше или равно значению наполнения при чтении, то параллельно с основной операцией чтения выполняется операция наполнения кэш-памяти (данные кэшируются). Если же данные уже есть в кэш-памяти, они считываются с SSD, а операция наполнения не осуществляется. Если значение счетчика чтения меньше порогового значения, оно увеличивается, а операция наполнения не выполняется. Для операции записи сценарий тот же. Подробнее он поясняется на иллюстрациях на предыдущем развороте.
Что происходит с содержимым кэша после его «разогрева»? Если на SSD есть свободное место, кэш продолжает заполняться «горячими» данными. Когда емкость SSD исчерпывается, применяется алгоритм перезаписи наименее используемых данных (Least Recently Used, LRU), то есть на место последних в кэш-памяти записываются новые «горячие» данные.
Если объем «горячих» данных превышает емкость SSD, процент считываемых из кэш-памяти данных уменьшается, соответственно, снижается и производительность. Кроме того, чем меньше емкость SSD (и чем больше объем горячих данных), тем интенсивнее обмен «горячих» данных. В результате SSD будет изнашиваться быстрее.
Специалисты Qsan рекомендуют использовать накопители Intel SSD DC S3500. Так, у SSD емкостью 480 Гбайт наработка на отказ (MTBF) составляет 2 млн ч. Что касается производительности, то типичная задержка у этих накопителей равна 50 мс, максимальная задержка при чтении — 500 мс (99,9% времени), а производительность при произвольном чтении блоками по 4 Кбайт достигает 75 тыс. IOPS, при записи — 11 тыс. IOPS. Это хороший вариант для SSD-кэширования.
КЭШИРОВАНИЕ ПРИ ЧТЕНИИ-ЗАПИСИ
Операция чтения при отсутствии данных в кэш-памяти происходит следующим образом:
- Приложение подает запрос на чтение данных.
- Данные считываются с HDD.
- Запрошенные данные возвращаются приложению.
- Выполняется операция наполнения SSD.
Операция чтения при наличии данных в кэш-памяти:
- Приложение подает запрос на чтение данных.
- Данные считываются с SSD.
- Запрошенные данные возвращаются приложению.
- При сбое SSD данные считываются с HDD.
Действия приложения при записи данных:
- Приложение подает запрос на запись данных.
- Данные записываются на HDD.
- Приложению возвращается статус операции.
- Выполняется операция наполнения кэш-памяти на SSD.
НАСТРОЙКА КЭШ-ПАМЯТИ SSD
Чтобы приложение использовало кэш-память на SSD максимально эффективно, ее можно настроить. Основные параметры — размер блока кэш-памяти, пороговые значения наполнения при чтении и при записи.
Размер блока. Большой размер блока кэш-памяти подходит для приложений, часто обращающихся к соседним (по физическому расположению) данным. Это называется высокой локальностью обращений. Увеличение размера блока также ускоряет наполнение кэш-памяти на SSD — ускоряется «разогрев» кэша, после которого приложения с высокой локальностью обращений будут демонстрировать весьма высокую производительность. Однако увеличение размера блока влечет за собой генерирование избыточного трафика ввода-вывода и увеличение времени отклика, особенно для отсутствующих в кэше данных.
Меньший размер блока хорош для приложений с менее локализованными данными, то есть когда доступ к данным осуществляется в основном случайным образом. Кэш-память на SSD будет «разогреваться» медленнее, но чем больше блоков, тем больше вероятность попадания в кэш нужных данных, особенно данных с низкой локальностью обращений. При небольших блоках коэффициент использования кэш-памяти ниже, но меньше будут и сопутствующие потери, так что при «промахе», когда нужных данных нет в кэш-памяти, производительность страдает меньше.
Пороговое значение наполнения. Порог наполнения кэша — это число обращений к данным, после которого соответствующий блок копируется в SSD-кэш. При большом значении кэшируются только часто используемые данные и уменьшается обмен данных в кэше, но увеличивается время «разогрева» кэш-памяти и растет эффективность ее использования. При меньшем значении кэш-память разогревается быстрее, но возможно ее избыточное наполнение. Для большинства приложений вполне достаточно порогового значения, равного 2. Наполнение при записи полезно в том случае, когда записываемые данные вскоре снова считываются. Подобное нередко случается в файловых системах. Другие приложения, например базы данных, не имеют такой особенности, поэтому наполнение при записи для них иногда лучше вовсе отключить.
Как можно видеть, увеличение или уменьшение каждого параметра имеет свои положительные и отрицательные последствия. Очень важно понимать «локальность» приложения. Кроме того, полезно протестировать систему на реальных нагрузках и посмотреть, при каких параметрах она показывает лучшие результаты.
Использование SSD-накопителей в качестве кэш-памяти дисковой подсистемы сервера
Дополнительные материалы по теме:
- Сравнение производительности различных типов серверных накопителей (HDD, SSD, SATA DOM, eUSB)
- Сравнение производительности новейших серверных RAID-контроллеров Intel и Adaptec (24 SSD)
- Сравнение производительности серверных RAID-контроллеров
- Производительность дисковой подсистемы серверов Intel на базе Xeon E5-2600 и Xeon E5-2400
- Таблицы сравнительных характеристик:RAID-контроллеры, Серверные HDD, Серверные SSD
- Ссылки на разделы прайс-листа:RAID-контроллеры, Серверные HDD, Серверные SSD
- Серверные конфигураторы
Большинство серверных приложений работают с дисковой подсистемой сервера в режиме случайного доступа, когда данные читаются или записываются небольшими блоками размером несколько килобайт, а сами эти блоки могут располагаться в дисковом массиве случайным образом.
Жесткие диски имеют среднее время доступа к произвольному блоку данных порядка нескольких миллисекунд. Это время необходимо для позиционирования головки диска над нужными данными. За одну секунду жесткий диск может прочитать (или записать) несколько сотен таких блоков. Этот показатель отражает производительность жесткого диска на случайных операциях ввода-вывода и измеряется величиной IOPS (Input Output per Second, операций ввода-вывода в секунду). То есть производительность случайного доступа для жесткого диска составляет несколько сотен IOPS.
Как правило, в дисковой подсистеме сервера несколько жестких дисков объединяются в RAID-массив, в котором они работают параллельно. При этом скорость операций случайного чтения для RAID-массива любого типа возрастает пропорционально количеству дисков в массиве, а вот скорость операций записи зависит не только от количества дисков, но также и от способа объединения дисков в RAID-массив.
Довольно часто дисковая подсистема является фактором, который ограничивает быстродействие сервера. При большом количестве одновременных запросов дисковая подсистема может достичь предела своей производительности и увеличение объема оперативной памяти или частоты процессора не даст никакого эффекта.
Радикальным способом увеличения производительности дисковой подсистемы является использование твердотельных накопителей (SSD-накопителей), в которых информация записывается в энергонезависимую flash-память. У SSD-накопителей время доступа к произвольному блоку данных составляет несколько десятков микросекунд (то есть на два порядка меньше, чем у жестких дисков), благодаря чему производительность даже одного SSD-накопителя на случайных операциях достигает 60’000 IOPS.
На следующих графиках приведены сравнительные показатели производительности RAID-массивов из 8-ми жестких дисков и 8-ми SSD-накопителей. Приведены данные для четырех различных типов RAID-массивов: RAID 0, RAID 1, RAID 5 и RAID 6. Чтобы не перегружать текст техническими подробностями, информацию о методике тестирования мы поместили в конце статьи.
Из диаграмм видно, что применение SSD-накопителей повышает производительность дисковой подсистемы сервера на операциях произвольного доступа от 20 до 40 раз. Однако широкому использованию SSD-накопителей мешают следующие серьезные ограничения.
Во-первых, современные SSD-накопители имеют небольшую емкость. Максимальная емкость жестких дисков (3TB) превосходит максимальную емкость серверных SSD-накопителей (300GB) в 10 раз. Во-вторых, SSD-накопители примерно в 10 раз дороже жестких дисков, если сравнивать стоимость 1GB дискового пространства. Поэтому построение дисковой подсистемы из одних только SSD-накопителей в настоящее время применяется довольно редко.
Однако можно использовать SSD-накопители в качестве кэш-памяти RAID-контроллера. О том, как это работает и что дает, давайте поговорим подробнее.
Дело в том, что даже в довольно большой дисковой серверной подсистеме емкостью в десятки терабайт объем «активных» данных, то есть данных, которые используются наиболее часто, относительно невелик. Например, если Вы работаете с базой данных, которая хранит записи за длительный период времени, активно использоваться скорее всего будет только небольшая часть данных, которая относится к текущему временному интервалу. Или если сервер предназначен для хостинга Интернет-ресурсов, большая часть запросов будет относиться к небольшому числу наиболее посещаемых страниц.
Таким образом, если эти «активные» (или «горячие») данные будут находиться не на «медленных» жестких дисках, а в «быстрой» кэш-памяти на SSD-накопителях, производительность дисковой подсистемы возрастет на порядок. При этом Вам не нужно заботится о том, какие данные должны быть размещены в кэш-памяти. После того, как в первый раз контроллер прочитает данные с жесткого диска, он оставит эти данные в кэш-памяти SSD и повторное чтение будет выполняться уже оттуда.
Более того, кэширование работает не только при чтении, но и при записи. Любая операция записи будет записывать данные не на жесткий диск, а в кэш-память на SSD-накопителях, поэтому операции записи также будут выполняться на порядок быстрее.
Практически механизм кэширования на SSD-накопителях может быть реализован на любом шести-гигабитном RAID-модуле или RAID-контроллере Intel второго поколения на базе микроконтроллера LSI2208: RMS25CB040, RMS25CB080, RMT3CB080, RMS25PB040, RMS25PB080, RS25DB080, RS25AB080, RMT3PB080. Эти RAID-модули и контроллеры применяются в серверах Team на базе процессоров Intel E5-2600 и E5-2400 (платформа Intel Sandy Bridge).
Чтобы использовать режим SSD-кэширования, необходимо установить на RAID-контроллер аппаратный ключ AXXRPFKSSD2. Кроме поддержки SSD-кэширования, этот ключ также ускоряет работу контроллера с «чистыми» SSD-дисками, когда они используются не в качестве кэш-памяти, а как обычные накопители. В этом случае можно достичь производительности на операциях случайного чтения-записи в 465’000 IOPS (режим FastPath I/O).
Давайте посмотрим на результаты тестирования производительности все того же массива из восьми жестких дисков, но уже с использованием четырех SSD-накопителей в качестве кэш-памяти и сравним их с данными этого массива без кэширования.
Мы выполнили тестирование для двух вариантов организации SSD-кэш. В первом варианте 4 SSD-накопителя были объединены в RAID-массив нулевого уровня (R0), а во-втором случае из этих 4-х SSD-накопителей был образован зеркальный массив (R1). Второй вариант немного медленнее на операциях записи, зато он обеспечивает резервирование данных в SSD-кэш, поэтому предпочтительнее.
Интересно, что производительность чтения и записи практически не зависит от типа «основного» RAID-массива жестких дисков, а определяется только скоростью работы SSD-накопителей кэш-памяти и типом ее RAID-массива. Более того, «кэшированный» RAID 6 из жестких дисков на операциях записи оказывается быстрее, чем «чистый» RAID 6 из SSD-накопителей (29’300 или 24’900 IOPS против 15’320 IOPS). Объяснение простое — фактически мы измеряем производительность не RAID 6, а RAID 0 или RAID 1 кэш-памяти, а эти массивы быстрее на записи даже при меньшем числе дисков.
В качестве кэш-памяти можно использовать и один SSD-накопитель, однако мы рекомендуем этого не делать, поскольку не обеспечивается резервирование данных кэш-памяти. В случае выхода такого SSD-накопителя из строя, целостность данных будет нарушена. Для SSD-кэширования лучше использовать как минимум два SSD-накопителя, объединенный в RAID-массив первого уровня («зеркало»).
Надеемся, что информация, изложенная в данной статье, поможет Вам в выборе эффективной конфигурации дисковой подсистемы сервера. Кроме того, необходимую техническую консультацию всегда готовы оказать наши менеджеры и инженеры.
Конфигурация тестового стенда и методика тестирования
Серверная платформа — Team R2000GZ
Расширитель SAS-портов Intel RES2CV360 36 Port Expander Car
RAID-контроллер — Intel RS25DB080 с ключом AXXRPFKSSD2
HDD — 8 дисков SAS 2,5″ Seagate Savvio 10K.5 300GB 6Gb/s 10000RPM 64MB Cache
SSD — 8 или 4 накопителя SSD SATA 2.5″ Intel 520 Series 180GB 6Gb/s
Тестирование выполнялось при помощи программы Intel IO Meter.
Для каждого варианта аппаратной конфигурации выбирались оптимальные настройки кэш-памяти контроллера.
Объем виртуального диска для тестирования — 50GB. Такой объем был выбран для того, чтобы тестируемый диск мог полностью поместится в SSD-кэш.
Прочие параметры:
Strip Size — 256KB.
Размер блока данных для последовательных операций — 1MB.
Размер блока данных для операций случайного доступа — 4 KB.
Глубина очереди — 256.
Стоит ли включать кэширование на SSD диске?
Сегодня мы рассмотрим еще один часто запутанный вычислительный термин, который обещает обеспечить повышенную производительность при изящном использовании компактного SSD в качестве кэша. Пустрая трата денег или стоящее приобретение? Мы углубились в эту тему, чтобы пролить свет на все, что нужно знать о кэшировании SSD.
Что такое SSD Cache?
Кэш SSD, или, как его правильно называют, SSD-кэширование, представляет собой механизм управления данными, разработанный Intel в начале 2010-х годов, который использует небольшой твердотельный накопитель в качестве кэша для жесткого диска, как правило, большего размера.
Кэш-память — это аппаратная или программная память, предназначенная для хранения часто используемых данных для быстрого и быстрого доступа. В случае процессоров кэш состоит из флэш-памяти, доступ к которой быстрее, чем в стандартной системной памяти, а кэш-память браузера хранит компоненты с часто посещаемых сайтов, поэтому они загружаются быстрее, что исключает необходимость извлечения данных через Интернет с хост-сервера.
Таким образом, кэш позволяет системе получать доступ к данным гораздо быстрее, чем если бы они были извлечены и прочитаны из своего последнего места на жестком диске, что приводит к повышению производительности для задач, зависящих от памяти.
Для кэширования SSD основная концепция заключается в предоставлении более быстрого и отзывчивого SSD накопителя в качестве временного хранилища для часто запрашиваемых данных, таких как основные операционные сценарии ОС и файлы, которые хранятся на более медленном обычном жестком диске. Скорость твердотельного накопителя примерно в десять раз выше, чем у жесткого диска, для большинства задач с твердотельным накопителем существенно лучше для операций чтения с небольшого диска с произвольным доступом, которые определяют основную часть повседневных задач в ОС.
В реальном выражении кэширование SSD будет включать в себя SSD небольшого размера, скажем, 40 ГБ, в сочетании с большим традиционным жестким диском, например, с емкостью 1 ТБ.
SSD Кэширование — совместимость
Intel разработала технологию кэширования SSD Smart Response Technology (SRT), а запатентованная итерация этого механизма доступна только на материнских платах с поддержкой SRT и чипсетами Intel. Что еще хуже, Intel не использует технологию всех своих наборов микросхем, которая ограничивает аппаратные конфигурации, которые пользователь может ожидать, сохраняя при этом возможность кэширования SSD.
Системы с чипсетами AMD требуют, чтобы пользователь использовал стороннее программное обеспечение для эмуляции кэширования SSD, поскольку AMD до сих пор не разработала или не интегрировала конкурирующую технологию в свои чипсеты. К счастью, существует множество программных решений, таких как FancyCache и PrimoCache. Как общеизвестно, они ненадежны и имеют целый ряд проблем.
Ограничения SSD-кэширования
Кэширование SSD дает ощутимые преимущества только тогда, когда система находится в том состоянии, которое мы называем «чистым», таким как загрузка компьютера после его выключения, перезагрузка Windows или первоначальный запуск приложения после перезагрузки или выключения питания. Существует иерархия памяти, которая работает от кэша ЦП до ОЗУ, кэша SSD, затем HDD. Перезапуск очищает кэш ЦП и ОЗУ, превращая кэш SSD в место доступа к данным.
Причина этого заключается в том, что во всех других случаях есть вероятность, что критически важные, часто используемые данные уже хранятся в ОЗУ системы, и, поскольку ОЗУ быстрее любого жесткого диска, будь то SSD или HDD, кэширование SSD делает процесс заполнения оперативной памяти данными, намного быстрее. Ничто не улучшит скорость, как то, что данные уже доступны в оперативной памяти.
Как видите, главное преимущество кэширования SSD наиболее очевидно при загрузке Windows: ОС находится в работоспособном состоянии гораздо раньше, чем в кэшированной системе без SSD. Аналогично, запуск Steam и вашей любимой игры после перезагрузки будет намного быстрее с SSD-кэшированием. Если вы работали без перезапуска в течение нескольких часов и открыли, затем закрыли различные программы и решили открыть их еще раз, SSD ничего не сделает для ускорения процесса.
Продолжая тему ограничивающих факторов, внутренняя работа SRT является тщательно охраняемым секретом, и Intel не сообщает подробностей о том, как технология проверяет, какие данные заслуживают кэширования, хотя ощутимые тенденции предполагают, что существует определенный предел размера данных. это может быть кэшировано весом не более нескольких мегабайт.
В любом случае система вернется к медленному источнику жесткого диска для данных. Со стороны пользователя это означает, что программы, которые полагаются на небольшие пакеты данных, работают хорошо, в то время как те, которые зависят от емких носителей, таких как видео и высококачественные аудиофайлы, — нет.
Если вы одновременно запускаете множество приложений, преимущества будут очевидны, в то время как если вы будете запускать одну и ту же программу изо дня в день, обрабатывая файлы большого формата, преимущества будут незначительными.
Стоит ли включать кэширование SSD?
Как только SSD-кэширование запущено, оно само по себе позаботится о том, чтобы не было никакой его настройки от пользователя. Преимущества, если таковые имеются, пассивно производятся, что делает его удобным решением.
Однако настройка кэширования, даже с набором микросхем Intel SRT, является трудной задачей, которая включает в себя использование правильных драйверов, правильную настройку BIOS и запуск его в качестве настройки RAID, установку драйверов Windows и Rapid Storage Technology, управление режимами и т.д. Суть в том, что он значительно сложнее, чем использование SSD-накопителя большой емкости и простая установка Windows.
Кэширование SSD исторически стоило намного меньше, чем выделение для SSD разумного размера, но, поскольку технология становится все более распространенной, цена даже 100 ГБ или более SSD экспоненциально становится более доступной с течением времени. Следовательно, комбинация SSD-кэша и жесткого диска заменяется более крупными бюджетными твердотельными накопителями в качестве места для ОС, в то время как больший жесткий диск используется для хранения носителей, к которому редко обращаются.
Вывод
По нашей оценке, основная концепция кэширования SSD стоит задуматься. На практике результаты не являются достаточно явными, чтобы выбрать кэширование SSD, а не большие затраты на больший SSD и запускать все — от Windows до ваших любимых шутеров с того же самого диска и позволить ОЗУ делать свои задачи быстрее.
Ssd в качестве кэша
В процессе изучения рынка ноутбуков возникло несколько вопросов по использованию SSD в них. Буду благодарен за помощь.
Сейчас в ноутбуках есть два подхода.
1. Полноценный активный SSD. (Иногда вместо, иногда вместе с HDD)
2. SSD-Cache + HDD
1. В случае, если есть обычный SSD я сам могу установить туда ОС и самые необходимые программы.
В случае SSD-cache система сама кладет туда некие «часто используемые» на ее взгляд данные, а я не имею доступа к SSD диску.
Верно ли я понимаю?
2. Насколько эффективен SSD-cache? Быстрее ли грузится система? Программы? Как в целом с потребительской точки зрения?
3. Как вы оцениваете эффективность cache по сравнению с полноценным SSD?
цитата: yevlampy:
3. Как вы оцениваете эффективность cache по сравнению с полноценным SSD? Полноценный SSD, на котором и система и рабочие файлы, работает гораздо быстрее.
Дома есть старенький ноут Toshiba Satellite.
Замена в нем умершего HDD на твердотелый SSD совершенно его преобразила по быстродействию.
Даже не поверил, что старенький загнанный коняга начнет летать как молодой рысак.
цитата: Volk1975:
цитата: yevlampy:
3. Как вы оцениваете эффективность cache по сравнению с полноценным SSD? Полноценный SSD, на котором и система и рабочие файлы, работает гораздо быстрее.
Дома есть старенький ноут Toshiba Satellite.
Замена в нем умершего HDD на твердотелый SSD совершенно его преобразила по быстродействию.
Даже не поверил, что старенький загнанный коняга начнет летать как молодой рысак.
Ок. а с SSD-кэшем не пробовали работать? отзывы тоже самые положительные. Получается дёшево и средито. Но может быть есть там подвох? Подозрительно уж дёшево выходит, нежели обычный SSD.
цитата: yevlampy:
Ок. а с SSD-кэшем не пробовали работать? отзывы тоже самые положительные. Получается дёшево и средито. Но может быть есть там подвох? Подозрительно уж дёшево выходит, нежели обычный SSD. Думаю, что подвоха никакого нет.
Просто более дешевый вариант, дающий быстродействие в соответствии со своей ценой.
Полностью все на SSD — все равно быстрее будет.
По ходу, HDD и их гибриды доживают последние дни.
Сначала на моем UX32VD была связка HDD+SSD, после 9 месяцев использования был поставлен полноценный SSD. Так что на своем примере могу рассказать.
1) да, верно. Примечание — для корректной работы объем задействуемого кеша должен быть равен объему оперативной памяти девайса.
2) Система грузится за 26-28 секунд в более-менее чистом виде, при полезной нагрузке из кучи программ и игр (без шлака) — 34-36 секунд. Против 50+- секунд обычного харда. Это win7hp x64 с подчищенным реестром.
Программы — быстрее грузятся часто используемые и недавно использованные. В целом — улучшение есть по сравнению с обычным хардом, заметное, но не очень значительное. Отзывчивость системы увеличивается, но задержки заметны.
3) HDD+SSD кеш полноценному SSD проигрывает ровно столько же, насколько выигрывает у обычного HDD. Загрузка с программами 18-20 секунд (win7hp x64), просто-таки реактивная скорость работы и копирования файлов. Да, еще, SSD полностью бесшумен. А обычный винт, кэш или не кэш, стрекочет заметно. Особенно ночью чувствуется и раздражает, если бук не отключать.
Считаю, что с заменой HDD на SSD (кеш я просто-напросто отключил) я поступил правильно, выигрыш в скорости работы это дало заметный, и автономность чуть выросла — кушает только SSD, а не связка из харда и кеша. Да и раньше-внутренний-теперь-внешний хард (я свой воткнул в кейс-коробочку с переходником под USB) годится для хранения резервной копии системы и кучки медиафайлов.
Если в буке используется связка полноценных SSD и HDD — под систему и данные соответственно — если места в корпусе хватит, получится сравнительно недорогой вариант быстрой системы. Потому что мой M4 на 512 гиг стоил 13000 рублей (и был единственным вариантом — нужны были и объем, и скорость, и 1 диск. В 13,3″ буке 1 sata-разъем, и то место есть лишь под 7-мм диски).
SSD на 128 гиг стоят 2,5-3,5к, + хард на терик, еще 3 с половиной тысячи. Итого в два раза дешевле и в два раза больше места для хранения данных.
Дешевые способы поддать жару системе хранения с помощью SSD
В статьях про СХД из «конспекта админа» практически не рассматривались технологии софтовой организации дискового массива. Кроме того, за кадром остался целый пласт относительно дешевых сценариев ускорения хранилищ с помощью твердотельных дисков.
Поэтому в этой статье рассмотрю три неплохих варианта использования SSD-дисков для ускорения подсистемы хранения.
Почему просто не собрать массив из SSD — немного теории и рассуждений на тему
Чаще всего твердотельные накопители рассматривают просто как альтернативу HDD, с большей пропускной способностью и IOPS. Однако, такая замена «в лоб» часто стоит слишком дорого (брендовые диски HP, например, стоят от $2 000), и в проект возвращаются привычные накопители SAS. Как вариант, быстрые диски просто используются точечно.
В частности, удобным выглядит использование SSD для системного раздела или для раздела с базами данных — с конкретным выигрышем в производительности можно ознакомится в соответствующих материалах. Из этих же сравнений видно, что при использовании обычных HDD узким местом является производительность диска, а в случае SSD сдерживать будет уже интерфейс. Поэтому замена одного лишь диска не всегда даст такую же отдачу, как комплексный апгрейд.
В серверах используют SSD с интерфейсом SATA, либо более производительные SAS и PCI-E. Большинство представленных на рынке серверных SSD с интерфейсом SAS продаются под брендами HP, Dell и IBM. К слову, даже в брендовых серверах можно использовать диски OEM-производителей Toshiba, HGST (Hitachi) и других, которые позволяют сделать апгрейд максимально дешевым при схожих характеристиках.
С широким распространением SSD был разработан отдельный протокол доступа к дискам, подключенным к шине PCI-E — NVM Express (NVMe). Протокол разработан с нуля и значительно превосходит своими возможностями привычные SCSI и AHCI. С NVMe обычно работают твердотельные диски с интерфейсами PCI-E, U.2 (SFF-8639) и некоторые M.2, которые быстрее обычных SSD более чем вдвое. Технология относительно новая, но со временем она обязательно займет свое место в самых быстрых дисковых системах.
Немного про DWPD и влияние этой характеристики на выбор конкретной модели.
Таким образом, при точечной замене обычных дисков твердотельными логично использовать MLC-модели в RAID 1, что даст отличную скорость при том же уровне надежности.
Считается, что использование RAID совместно с SSD — не лучшая идея. Теория основывается на том, что SSD в RAID изнашиваются синхронно и в определенный момент могут выйти из строя все диски разом, особенно при ребилде массива. Однако, с HDD ситуация точно такая же. Разве что, испорченные блоки магнитной поверхности не дадут даже прочитать информацию, в отличие от SSD.
По-прежнему высокая стоимость твердотельных накопителей заставляет задуматься об альтернативном их использовании, помимо точечной замены или использования СХД на базе одних лишь SSD.
Расширяем кэш RAID-контроллера
От размера и скорости кэша RAID-контроллера зависит скорость работы массива в целом. Расширить этот кэш можно с помощью SSD. Технология напоминает решение Smart Response от Intel.
При использовании подобного кэша данные, которые используются чаще, хранятся на кэширующих SSD, с которых производится чтение или дальнейшая запись на обычный HDD. Режимов работы обычно два, аналогично привычному RAID: write-back и write-through.
В случае write-through ускоряется только чтение, а при write-back — чтение и запись.
Подробнее об этих параметрах вы можете прочитать под спойлером.
Для работы обычно требуется специальная лицензия или аппаратный ключ. Вот конкретные названия технологии у популярных на рынке производителей:
LSI (Broadcom) MegaRAID CacheCade. Позволяет использовать до 32 SSD под кэш, суммарным размером не более 512 ГБ, поддерживается RAID из кэширующих дисков. Есть несколько видов аппаратных и программных ключей, стоимость составляет около 20 000 р;
Microsemi Adaptec MaxCache. Позволяет использовать до 8 SSD в кэше в любой конфигурации RAID. Отдельно лицензию покупать не нужно, кэш поддерживается в адаптерах серии Q;
HPE SmartCache в серверах ProLiant восьмого и девятого поколения. Актуальная стоимость доступна по запросу.
Схема работы SSD-кэша предельно проста — часто используемые данные перемещаются или копируются на SSD для оперативного доступа, а менее популярная информация остается на HDD. Как итог, скорость работы с повторяющимися данными значительно возрастает.
В качестве иллюстрации работы RAID-кэша на базе SSD можно привести следующие графики:
StorageReview — сравнение производительности разных массивов при работе с базой данных: использованы обычные диски и их альтернатива на базе LSI CacheCade.
Но если есть аппаратная реализация, то наверняка существует и программный аналог за меньшие деньги.
Быстрый кэш без контроллера
Помимо программного RAID существует и программный SSD-кэш. В Windows Server 2012 появилась интересная технология Storage Spaces, которая позволяет собирать RAID-массивы из любых доступных дисков. Накопители объединяются в пулы, на которых уже размещаются тома данных — схема напоминает большинство аппаратных систем хранения. Из полезных возможностей Storage Spaces можно выделить многоярусное хранение (Storage Tiers) и кэш записи (write-back cache).
Storage Tiers позволяет создавать один пул из HDD и SSD, где более востребованные данные хранятся на SSD. Рекомендованное соотношение количества SSD к HDD 1:4-1:6. При проектировании стоит учитывать и возможность зеркалирования или четности (аналоги RAID-1 и RAID-5), так как в каждой части зеркала должно быть одинаковое количество обычных дисков и SSD.
Кэш записи в Storage Spaces ничем не отличается от обычного write-back в RAID-массивах. Только здесь необходимый объем «откусывается» от SSD и по умолчанию составляет один гигабайт.
Общая схема работы выглядит так:
При записи на чистый диск данные сохраняются на SSD;
Когда SSD заполнены, данные пишутся в write-back кэш, который записывается на HDD;
Если кэш переполнен, запись ведется напрямую на HDD;
В процессе работы данные реорганизуются так, чтобы «горячая» информация хранилась на
SSD, а «холодная» — на HDD.
Если рассматривать другие операционные системы, то технологий доступно еще больше. Например, в GNULinux есть bcache, EnhanceIO, dm-cache и lvmcache, L2ARC в ZFS, Cache Tiering и Cache Pool в Cephs.
Если говорить о программном ускорении дисковой системы, то интересным вариантом выглядит использование для этих целей оперативной памяти. Существует ряд приложений, позволяющих «откусить» часть RAM под кэш — например PrimoCache. Подобные решения, помимо ускорения работы, помогут и продлить жизнь SSD. Главное предусмотреть защиту от проблем с питанием и не размещать в таких разделах слишком важные данные.
Итого
Файловые и веб-серверы хорошо работают с кэшем на SSD, а для размещения производственной базы данных приоритетнее RAID-массив из обычных дисков под данные и отдельное SSD-зеркало под журналы транзакций. Остальные сценарии работы с данными требуют более творческого подхода и знания специфики использования.