Light-electric.com

IT Журнал
306 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какой объем памяти видеокарты займет изображение

Руководство покупателя игровой видеокарты


Последнее обновление от 28.09.2012


Выбор объёма видеопамяти

Производительность видеокарты определяется не только мощностью самого GPU. Любому чипу нужен большой объём выделенной памяти с высокой пропускной способностью при записи и чтении различных данных: текстур, вершин, содержимого буферов и т. п. Даже самый мощный видеочип можно «придушить» слишком малым объёмом видеопамяти, да ещё с медленным доступом, поэтому характеристики устанавливаемых микросхем памяти также являются одними из важнейших параметров современных видеокарт.

Микросхемы памяти, количество которых на некоторых моделях видеокарт достигает 24 штук, обычно располагаются на печатной плате вокруг видеочипа, на одной или обеих сторонах. В некоторых случаях для них не используется даже пассивное охлаждение, но часто применяется общий кулер, охлаждающий и GPU и память, а иногда и отдельные радиаторы. Вот так микросхемы памяти выглядят на GeForce GTX 590 со снятым устройством охлаждения:

Современные видеокарты оснащаются различным объемом локальной видеопамяти, но обычно он начинается от 512 МБ и может достигать 3 ГБ на один GPU (с удвоением объёма на двухчиповых видеокартах). Чаще всего на видеокарты low-end и mid-end сейчас ставят 1 ГБ памяти, а на high-end — 1,5-3 гигабайта на чип, но есть и исключения. Так, карты самого низкого уровня могут иметь и 512 МБ более быстрой памяти GDDR5, и 1-2 ГБ медленной DDR3.

Чем больше выделенной памяти установлено на видеокарте, тем больше данных (тех же текстур, вершин и буферов) можно хранить в ней, не используя медленный доступ к ОЗУ компьютера. Причем, больше всего места занимают текстуры и различные буферы, а вот собственно геометрические данные обычно не слишком объёмны. Рассмотрим скриншоты из довольно старой игры Call of Duty 2 с разными установками качества текстур:

В этой игре, как и во многих других, автоматически настраивается качество текстур под имеющийся объём текстурной памяти. В данном случае режим Extra автоматически выставляется на видеокартах с 320-1024 МБ памяти, High или Normal — на 256 МБ, в зависимости от настроек разрешения и уровня антиалиасинга, а Low — на самых слабых GPU с 128 МБ. И даже если вы выставите максимальные настройки вручную, то на видеокарте с недостаточным объёмом видеопамяти для хранения ресурсов будет использоваться часть системной памяти, что приведет к серьёзным «тормозам» и отсутствию комфорта и плавности в игре.

В последнее время рост требований к объёму видеопамяти сильно замедлился, и виновато в этом засилие мультиплатформенных игр. Современные игровые консоли имеют лишь по 512 МБ памяти и поэтому разработчики игр ориентируются именно на этот уровень. Конечно, в ПК-версиях игр зачастую предусмотрены как текстуры большего разрешения, так и высокое разрешение рендеринга, что требует куда большего объёма видеопамяти. Но всё равно, объём памяти в 1 ГБ до сих пор вполне приемлем в подавляющем большинстве случаев. Кроме экстремальных настроек сглаживания и разрешения, вроде MSAA 8x и 2560×1600, соответственно.

Но даже уже устаревшим мультиплатформенным играм не хватает 512 МБ, они довольно требовательны к объёму видеопамяти, занимая до 600-700 МБ. И всё же, на данный момент минимальным необходимым объёмом локальной памяти для игровых видеокарт мы считаем 1 ГБ. Он же является и оптимальным для большинства моделей. Кроме видеокарт NVIDIA, имеющих 320- и 384-битную шины памяти — у них объём видеопамяти ещё более подходящий — 1280-1536 МБ. Но для топовых моделей уже востребован и больший объём, порядка 2 ГБ, что предлагают видеокарты серии Radeon HD 6900, и 3 ГБ, ставящиеся на некоторые модификации GeForce GTX 580. Тем более, что видеокарту всегда лучше подбирать с небольшим запасом.

К слову, в случае интегрированных видеоядер и устаревших дискретных видеокарт бывает так, что указанное на коробке количество видеопамяти не равно объему установленных на плату микросхем. Такое было ранее в случае видеоплат low-end, работающих с частью системной памяти при помощи технологий TurboCache (NVIDIA) и HyperMemory (ATI):

В характеристиках видеокарт с поддержкой этих технологий в маркетинговых целях указывался объём памяти (в т. ч. и часть ОЗУ), который может использоваться видеочипом, равный 128 МБ, в то время как в реальности на них установлен меньший объем — 16-32 МБ. Поэтому всегда нужно внимательно читать материалы нашего сайта, чтобы не попадаться на подобные ухищрения в будущем. Но пока что можно жить спокойно, ведь сейчас в таких видеокартах уже нет никакого смысла, их нишу прочно заняли интегрированные чипсеты.

С имеющимися разновидностями видеокарт по объёму локальной памяти мы разобрались, но ведь объём памяти для видеокарт — это еще не всё, и даже зачастую не главное! Очень часто бывает так, что на дешёвые видеокарты ставят очень большое количество памяти, чтобы нарисовать красивые цифры на их коробках и в описаниях готовых систем (поэтому их так любят сборщики — вспомните слоганы вроде «4 ядра, 4 гига»), с расчетом на то, чтобы они лучше продавались. Но для слабых видеокарт в повышенном объёме памяти никакого смысла нет, они ведь всё равно не смогут выдавать приемлемую частоту кадров на высоких настройках, в которых и используется большие объёмы текстур и геометрии.

Продавцы часто используют объём видеопамяти в качестве основной характеристики видеокарт, и это вводит в заблуждение простых покупателей, плохо знакомых с реальным положением дел. Сравним производительность решений с разным количеством видеопамяти на примере двух одинаковых видеокарт Radeon HD 6950, имеющих единственное отличие — на первой из них установлено 1 ГБ видеопамяти, а на второй — 2 ГБ. Любой менеджер по продажам скажет вам, что вторая видеокарта значительно лучше первой, кроме случаев, когда в магазине есть модели только с 1 ГБ памяти и редчайших случаев честных и компетентных продавцов. А что получается на самом деле? Есть ли великая разница? Посмотрим на цифры, полученные в игре Metro 2033, являющейся одной из наиболее требовательных:

Как видите, в большинстве игровых режимов объём видеопамяти влияет на производительность не слишком значительно — разница не превышает 5-6%. То же самое получается и в других играх, даже современных и ПК-эксклюзивных (что сейчас большая редкость). Лишь в сверхвысоком разрешении и с максимальными настройками качества появляется значимая разница, когда модель с 1 ГБ заметно отстаёт от более дорогой карты с 2 ГБ памяти — на 27%.

Казалось бы — вот оно, ради чего нужно платить деньги! Но посмотрите на цифры кадров в секунду при разрешении 2560×1600 — разве 18,9 FPS можно назвать комфортной скоростью? Нет. Что 14,9 FPS, что 18,9 FPS — эти цифры одинаково не имеют практического смысла, никто не будет играть с настолько дёрганой частотой смены кадров. Поэтому, с некоторым допущением, можно считать, что разница в объёме видеопамяти между 1 ГБ и 2 ГБ сейчас незначительно сказывается на скорости рендеринга, и сравнивать даже топовые видеокарты по количеству памяти не нужно.

Но речь шла только об объёмах памяти выше 1 ГБ. Да и 512 МБ для плат нижнего ценового диапазона сейчас вполне достаточны. В этих случаях, примеры, когда объём памяти начинает сказываться на производительности, весьма редки. Разработчики игровых приложений рассчитывают используемые в играх ресурсы и графические настройки так, чтобы все данные входили в локальную видеопамять наиболее распространённых на рынке видеокарт. То есть, сейчас это уровни 512 МБ (для low-end) и от 1 ГБ для всех остальных видеокарт, включая и высокие разрешения и максимальные настройки качества. А если видеопамяти меньше, то современные игры или будут тормозить или даже не дадут выставить максимальные настройки.

Читать еще:  Подойдет ли монитор к видеокарте

Но этот расчётный объем видеопамяти у игровых разработчиков растет, даже несмотря на засилие консолей и мультиплатформы. Ещё пару лет назад было вполне достаточно 512-640 МБ, а теперь появились проекты, в которых этот объёма недостаточно. Но даже среди самых последних игр таких проектов пока мало, но они уже появляются. Поэтому, в случае не слишком большой разницы в цене между видеокартами с разными объёмами памяти при прочих равных условиях (частота и ширина шины), следует покупать модель с большим объёмом. Но без погони за цифрами — никакой low-end карте не поможет пара гигабайт медленной DDR3-памяти. Такой объём ей на данный момент просто не нужен. Зато важен другой параметр, о котором мы поговорим далее.

Подробнее о пропускной способности памяти

Ещё одна важная характеристика, о которой мы уже писали — это пропускная способность памяти (ПСП), которая зависит как от частоты работы памяти, так и от ширины шины. Этот параметр определяет количество данных, которые теоретически можно передать в память или из памяти за единицу времени. Другими словами, это скорость, с которой графическое ядро может записывать и считывать различные данные в локальную видеопамять. Соответственно, чем быстрее считываются текстурные, геометрические и прочие данные, и чем быстрее записываются в буфер рассчитанные пиксели, тем выше будет общая производительность.

Пиковая пропускная способность памяти рассчитывается довольно просто — это произведение «эффективной» частоты памяти на количество данных, передаваемых за такт (ширина шины памяти). Например, для GeForce GTX 580 с шиной 384 бит и частотой видеопамяти 1002(4008) МГц, ПСП будет равна:

1002 МГц × 4 (передача данных с учетверённым темпом) × 48 (384/8 байт за такт) ≈ 192,4 ГБ/с

Если с эффективной частотой памяти всё понятно, её обычно везде пишут, и на коробках, и в характеристиках прописывают прямо, то с шиной всё несколько сложнее, ведь она далеко не всегда явно указывается производителем, поэтому на неё нужно обращать особое внимание. Большинство современных видеокарт используют 128-битную или 256-битную шину памяти на один GPU, топовые модели могут иметь до 384 бит, а некоторые недорогие платы оснащаются лишь 64-битной шиной.

Естественно, что последнее нигде широко не афишируется. Для производителя узкая шина и дешевле в производстве, и позволяет удобнее масштабировать производительность решений линейки. И две одинаковые видеокарты с одинаковыми частотами, но с разной шириной шины памяти, будут сильно отличаться по производительности. Та, у которой ПСП больше, может обрабатывать большее количество данных, по сравнению с картой с меньшей разрядностью шины, хотя сами GPU у них совершенно одинаковые.

Рассмотрим очень жизненный пример — модель GeForce GTS 450 с двумя разными типами памяти, GDDR5 на более дорогой модели и DDR3 на дешёвой. Во время выхода на эту видеокарту ставили исключительно быструю GDDR5-память с приличной пропускной способностью. Но когда её время прошло и она спустилась в нижний ценовой диапазон, производители начали экономить, выпуская варианты с DDR3-памятью, которая гораздо дешевле. Результат подобной экономии можно пронаблюдать на следующей диаграмме:

Как видите, всё очень печально для DDR3-варианта — даже в далеко не самой новой игре разница в различных разрешениях экрана составляет от 50 до 70%! То есть, мощность GPU во всех протестированных условиях ограничена медленной видеопамятью. Модель с DDR3 просто не может считывать и записывать данные с теоретически возможной скоростью. Таким образом производители вместе с компанией NVIDIA снизили себестоимость модели, спустив её ещё ниже в бюджетный сегмент.

Поэтому при выборе между видеокартой с бо́льшим и меньшим объёмом видеопамяти нужно всегда смотреть на тактовые частоты, ширину шины и цены! Так, при большой разнице в ценах между двумя решениями среднего и низшего уровней с 1 ГБ и 2 ГБ памяти нет смысла гнаться за дорогим вариантом — видеокарта такого уровня просто не получит большой прибавки в производительности от увеличенного объёма. Но если приходится выбирать между видеокартами с разным объёмом памяти и разной ПСП, то тут выбор уже не так однозначен, и нужно его совершать исходя из того, какого уровня видеокарта и насколько разнятся их частоты. Не забывая и про цену, естественно.

Например, при выборе между топовой видеокартой с 1,5 ГБ памяти и более высокими тактовыми частотами против такой же карты но с 3 ГБ памяти со стандартными частотами и более высокой ценой на данный момент выгоднее будет первая видеокарта, так как она обеспечит даже бо́льшую производительность почти во всех режимах и условиях, кроме самых высоких разрешений. То же касается, к примеру, GeForce GTS 450 с 1 ГБ GDDR5-памяти против GTS 450 с 2 ГБ DDR3 — первый вариант точно будет быстрее. В большинстве режимов видеокарты бо́льшая частота и ширина шины играет значительно более важную роль, чем бо́льший объём видеопамяти, и только в высоких разрешениях увеличенный объем может серьёзно сказаться на скорости рендеринга.

Нахождение информационного объема графического файла

Палитра (N) — количество используемых в наборе цветов .

Глубина цвета (I) — количество бит (двоичных разрядов), отводимых в видеопамяти под каждый пиксель.

Каждый цвет имеет свой уникальный двоичный код.

Код цвета пикселя содержит информацию о доле каждого базового цвета.

Число цветов, воспроизводимых на экране монитора (N), и число бит, отводимых под кодирование цвета одного пикселя (I), находится по формуле: N=2 I

Глубина цвета и количество отображаемых цветов

Где V — информационный объем рисунка (файла), К — общее количество точек рисунка или разрешающая способность монитора, I — глубина цвета.

1. Растровый файл, содержащий черно-белый рисунок, имеет объем 300 байт. Какой размер может иметь рисунок в пикселях?

Решение: Объем файла V=300б=2400бит. Рисунок черно-белый, значит, палитра состоит из двух цветов (черный, белый), т.е. N=2. Отсюда находим глубину цвета I= 1бит.

Ответ: Рисунок может состоять из 2400 пикселей.

Сколько информации содержится в картинке экрана с разрешающей способностью 800х600 пикселей и 16 цветами?

Количество точек К=800х600=480000

Глубина цвета I=4 бита, т.к. 2 4 =16

480000·4 = 1920000 бит = 240000 б= 234,375 Мб ≈ 0,23 Кб

Определить объем видеопамяти компьютера, который необходим для реализации графического режима монитора High Color с разрешающей способностью 1024х768 точек и палитрой из 65536 цветов.

Решение: Глубина цвета составляет: I=log265536=16 бит.

Количество точек изображения равно:

Требуемый объем видеопамяти равен:

16 бит·768 432= 12 582 912 бит ≈1,2 Мбайта

Достаточно ли видеопамяти объемом 256 Кб для работы монитора в режиме 640х480 и палитрой из 16 цветов?

Решение: Палитра N = 16, следовательно, глубина цвета I = 4 бита (2 4 =16).

Общее количество точек равно: 640 · 480 = 307200.

Информационный объем равен:

307200 · 4 бита = 1228800 бит = 153600 байт = 150 Кб

Ответ: видеопамяти достаточно, 150 Кб 2 + (0,75L) 2 = 38,1 2

1,5625L 2 = 1451,61

Количество точек по ширине экрана равно:

305 мм : 0,28 мм = 1089

Максимально возможным разрешением экрана монитора является 1024х768.

Сканируется цветное изображение размером 10х10 см. Разрешающая способность сканера 600 dpi и глубина цвета 32 бита. Какой информационный объем будет иметь полученный графический файл?

Решение: Разрешающая способность сканера 600 dpi (dot per inch — точек на дюйм) означает, что на отрезке длиной 1 дюйм сканер способен различить 600 точек.

Переведем разрешающую способность сканера из точек на дюйм (1 дюйм = 2,54 см) в точки на сантиметр:

600dpi : 2,54 ≈ 236 точек/см.

Следовательно, размер изображения в точках составит

Общее количество точек изображения равно:

2360 · 2360 = 5 569 600.

Информационный объем файла равен:

32 бита · 5569600 = 178 227 200 бит = 22278400 б = 21756 Кб ≈ 21 Мб

Читать еще:  Код 43 при установке драйвера видеокарты

1. Информационный объем одной точки черно-белого растрового изображения равен: 1 биту, 2 битам, 1 байту, 2 байтам

2. Информационный объем одной точки 16-цветного растрового изображения равен: 1 биту, 2 битам, 3 битам, 4 битам.

3. Информационный объем одной точки 256-цветного растрового изображения равен: 1 биту, 1 байту, 2 битам, 2 байтам.

4. 256-цветное изображение файла типа ВМР имеет размер 1024х768 пикселей. Определите информационную емкость файла. Ответ: 768 Кбайт.

5. Какой объем памяти видеокарты займет изображение 32-разрядного файла типа ВМР, экранный размер которого 1024х768 пикселей?

6. Какую часть экрана займет изображение файла типа ВМР объемом 3 Мбайт, созданного при глубине цвета, равной 32 бита, при разрешении экрана 1024х768 точек и качестве цветопередачи 32 бита? 1) Весь экран. 2) ½ экрана. 3) 1/3 экрана. 4) ¼ экрана.

1) (1024 х 768 х 32)/8 – информационный объем изображения рабочего стола, выраженный в байтах.

2)3х2 10 х2 10 /(2 10 х768х2 5 )/2 3 = 2 10 /(256х2 2 ) = 2 10 2 10 = 1.

7. После изменения свойств рабочего стола монитор приобрел разрешение 1024х768 точек и получил возможность отображать 65 536 цветов. Какой объем видеопамяти занимает текущее изображение рабочего стола? 1) 3 Мб. 2) 1,5 Мб. 3) 12 Мб. 4) 24 Мб.

8. Фотография размером 10х10 была отсканирована с разрешением 400 dpi при глубине цвета, равной 24 бита. Определите информационную емкость полученного растрового файла. 1) 7,3 Мб. 2) 940 Кб. 3) 150 Кб. 4) 7,3 Кб.

1) 10/0,25 = 4 (дюйм)

2) 4 х 400 = 1600 (пиксел).

(1600 х 1600 х24)/8 = (24 х 100 х 24 х 100 х 3) = 28 х 3 х 104 = 7 680 000 (байт) = 7,3 Мб.

Задания к главе «Обработка графической информации» (Ответы)

123. Запишите названия базовых цветов в цветовой модели RGB:

125. Подпишите цвета, соответствующие каждой области:

126. Выберите (отметьте галочкой) основные параметры монитора, определяющие качество компьютерного изображения:

127. Заполните таблицу, вычислив количество цветов в палитре N при известной глубине цвета i:


128. Сколько цветов будет содержать палитра, если на один пиксель отводится 4 бита памяти?

Ответ: 16

129. Для кодирования одного из цветов палитры служит двоичный код 001. Сколько цветов содержит палитра?
Ответ: 8

130. Сколько битов памяти достаточно для кодирования одного пикселя 16-цветного изображения?

Ответ: 4

131. Растровый газетный рисунок состоит из точек четырёх цветов: чёрного, тёмно-серого, светло-серого, белого. Сколько битов понадобится для двоичного кодирования одного пикселя этого рисунка?
Ответ: 2

132. Монитор позволяет получать на экране 224 цветов. Какой объём памяти в байтах требуется для кодирования 1 пикселя?
Ответ: 24

133. Монитор позволяет получать на экране 65 536 цветов. Какой объём памяти в байтах требуется для кодирования 1 пикселя?
Ответ: 16

134. Заполните схему, описывающую видеосистему персонального компьютера:

135. Каков минимальный объём видеопамяти, необходимый для хранения графического изображения, занимающего область экрана 512 х 512 точек, где каждая точка может иметь один из 256 цветов?

136. Вычислите необходимый объём видеопамяти для графического режима, если разрешение экрана монитора 1280 х 1024, глубина цвета — 32 бита.
1280*1024=1310720 – всего точек
1310720*32=41943040 бит=5242880 байт=5,1 Мб

137. Рассчитайте объём видеопамяти, необходимой для хранения графического изображения, занимающего весь экран монитора с разрешением 1024 х 768 и количеством отображаемых цветов, равным 16 777 216.

138. Вы хотите работать с разрешением 1600 х 1200 пикселей, используя 16 777 216 цветов. В магазине продаются видеокарты с памятью 512 Кбайт, 2 Мбайта, 4 Мбайта и 64 Мбайта. Какие из них можно купить для вашей работы?

139. Подсчитайте объём данных, передаваемых от видеопамяти к монитору в режиме 1024 х 768 пикселей с глубиной цвета 16 битов и частотой обновления экрана 75 Гц.
1024*768*16*75=943718400 бит=113 Мбайт

140. Графический файл содержит чёрно-белое изображение (без градаций серого) размером 100 х 100 точек. Каков информационный объём этого файла?
100*100=10000 бит=1250 байт

141. Вычислите объём чёрно-белого (без градаций серого) изображения в байтах, если одна клетка на рисунке соответствует одному пикселю.

142. Графический файл содержит чёрно-белое изображение с 16 градациями серого цвета размером 10 х 10 точек. Каков информационный объём этого файла?

143. Для хранения растрового изображения размером 64 х 64 пикселя отвели 512 байтов памяти. Каково максимально возможное число цветов в палитре изображения?


147. Средняя скорость передачи данных по некоторому каналу связи равна 28800 бит/с. Сколько секунд потребуется для передачи по этому каналу цветного изображения размером 640 х 480 пикселей при условии, что цвет каждого пикселя кодируется 3 байтами?

640*480*3=921600 байт
28800 бит/с=3600 байт/с
921600/3600=256 секунд

148. Размер рабочей области графического редактора, работающего с 16-цветной палитрой, равен 50 х 40 пикселей. Картинка, занимающая всю рабочую область графического редактора, передаётся по некоторому каналу связи за 5 с. Определите скорость передачи информации по этому каналу.

149. Выберите (отметьте галочкой) устройства ввода графической информации:

150. Сканируется цветное изображение размером 2×3 дюйма. Разрешающая способность сканера — 600 х 600 dpi, глубина цвета — 8 битов. Какой информационный объём будет иметь полученный графический файл?
dpi – количество точек на 1 дюйм
i=2*3*8*600*600=17280000 бит=2160000 байт

151. Сканируется цветное изображение размером 10 х 10 см. Разрешающая способность сканера — 600 х 1200 dpi, глубина цвета — 2 байта. Какой информационный объём будет иметь полученный графический файл?
i=(10/2,4)*(10*2,4)*8*2*600*1200=4,2*4,2*8*1200*1200=203212800 бит= 25401600 байт

152. Сканируется цветное изображение размером 10 х 15 см. Разрешающая способность сканера — 600 х 600 dpi, глубина цвета — 3 байта. Какой информационный объём будет иметь полученный графический файл?
I=(10/2,4)*(15*2,4)*8*3*600*600=4,2*6,25*24*600*600=226800000 бит

153. Установите соответствие:

154. Дайте сравнительную характеристику растровых и векторных изображений, ответив на следующие вопросы:

155. Выберите (отметьте галочкой) графические форматы файлов:

156. Соедините линиями основные элементы окна графического редактора Microsoft Paint и соответствующие им названия.

159. Занесите результаты, полученные при выполнении задания 3.1 на стр. 130-131 учебника, в таблицу:

160. Растровое изображение было сохранено в файле как 256-цветный рисунок. Во сколько раз уменьшится информационный объём файла, если это же изображение сохранить как монохромный (чёрно-белый без градаций серого) рисунок?

162. В процессе преобразования растрового графического изображения количество цветов в палитре уменьшилось с 16777216 до 256. Во сколько раз при этом уменьшился информационный объём изображения?

163. Какую часть экрана, имеющего разрешение 1024 х 768 точек, займёт изображение файла типа BMP объёмом 1 Мбайт, созданного при глубине цвета, равной 32 бита?
1Мбайт=8388608 бит К=I/i=8388608/32=262144 – всего пикселей
У нас экран с разрешением 1024*768=785432 пикселей
Следовательно, изображение будет занимать 262144/786432=1/3 – третью часть экрана

164. После изменения свойств Рабочего стола монитор приобрёл разрешение 1024 х 768 точек и получил возможность отображать 65536 цветов. Какой объём видеопамяти необходим для текущего изображения Рабочего стола?

165. Выпишите основные понятия главы 3 и дайте их определения.

Компьютерная Энциклопедия

Архитектура ЭВМ

Компоненты ПК

Интерфейсы

Мини блог

Самое читаемое

Видеоадаптеры

Вычисление необходимого объема видеопамяти

Объем памяти, необходимый для создания режима с заданным разрешением и количеством цветов, вычисляется следующим образом. Для кодирования каждого пикселя изображения необходим определенный объем памяти, а общее количество пикселей определяется заданным разрешением. Например, при разрешении 1024×768 на экране отображается 786432 пикселя.

Если бы это разрешение поддерживало только два цвета, то для отображения каждого пикселя понадобился бы всего один бит памяти, при этом бит со значением 0 определял бы черную точку, а со значением 1 — белую. Отведя на каждый пиксель 24 бит памяти, можно отобразить более 16,7 млн. цветов, так как число возможных комбинаций для 24-разрядного двоичного числа составляет 16777216 (т.е. 224). Перемножив количество пикселей, используемых при заданном разрешении экрана, на число битов, требующихся для отображения каждого пикселя, получим объем памяти, необходимый для формирования и хранения изображений в этом формате. Ниже приведен пример подобных вычислений.

Читать еще:  Как узнать модель своей видеокарты

Итак, для отображения картинки с глубиной цвета 24 бит и разрешением 1024×768 пикселей потребуется 2,25 Мбайт видеопамяти на видеоадаптере. Поскольку объем модулей памяти “физически” кратен степеням двойки, т.е. можно установить 256 либо 512 Кбайт, 1, 2 либо 4 Мбайт и т.д., для поддержки такого режима необходимо хотя бы 4 Мбайт.

Чтобы иметь еще более высокое разрешение и большее количество оттенков на плате SVGA, объем памяти должен существенно превышать 256 Кбайт, установленных на плате стандартного адаптера VGA. В таблице перечислены требования к объему памяти для ряда стандартных разрешений и значений глубины цвета при выполнении операций с двухмерной графикой, таких как редактирование фотографий, подготовка презентаций, работа с настольными издательскими системами, а также веб-дизайн.

Из таблицы видно, что все современные видеоадаптеры (в том числе и интегрированные) способны формировать изображение, содержащее 16,8 млн. цветовых оттенков, при любом разрешении; более того, они оснащаются гораздо большим, чем указано в таблице, объемом памяти, так как того требуют функции трехмерной графики.

Видеоадаптерам, поддерживающим функции трехмерной графики, при заданных глубине цвета и разрешении потребуется больший объем видеопамяти, поскольку данные видеоадаптеры используют еще три буфера: передний буфер, задний буфер и Z-буфер. Объем видеопамяти, который требуется для выполнения той или иной операции, зависит от настроек глубины цвета и Z-буфера. При тройной буферизации трехмерным текстурам выделяется больший объем видеопамяти, чем при двойной, однако при этом может снижаться быстродействие некоторых игр. Режим буферизации, как правило, задается в диалоговом окне свойств видеоадаптера.

В таблице ниже представлены требования к объему видеопамяти в некоторых режимах работы видеоадаптеров, поддерживающих функции обработки трехмерной графики.

Примечание!

Как видно из сравнения данных в таблице с характеристиками современных видеоадаптеров AGP и PCI Express (даже малобюджетных моделей), последние предлагают существенно больший объем памяти, чем требуется для поддержки даже самого высокого разрешения экрана. Дополнительная видеопамять используется для хранения объемных трехмерных текстур и для увеличения производительности обработки трехмерной графики.

Хотя современные интегрированные графические решения поддерживают функции обработки трехмерной графики, по целому ряду причин их быстродействие оказывается достаточно низким. Это обусловлено менее производительными графическими процессорами, а также более узкой шиной данных, используемой для доступа к памяти. Так как интегрированная графика делит оперативную память с центральный процессором, они вынуждены использовать одну и ту же шину данных. В одноканальных системах это ограничивает ширину шины 64 разрядами. В двухканальных системах существует 128-канальная шина данных, однако современные графические процессоры требуют ширину 512 и более битов. Чем шире шина данных, тем быстрее могут передаваться графические данные.

По этой причине уровень быстродействия в современных компьютерных играх при использовании интегрированного графического ядра вас не устроит (более того, многие игры не удастся даже запустить). Чтобы иметь возможность запускать подобные игры, придется приобрести современный видеоадаптер среднего или высокого уровня на базе графического процессора от компании ATI или NVIDIA, оснащенный памятью объемом 256 Мбайт и больше.

Если вы хотите получить максимальный уровень быстродействия и это позволяет ваш бюджет, приобретите два адаптера с интерфейсом PCI Express, поддерживающих работу в паре.

Ответы на тест 3 по Информатике 7 класс (Босова Л.Л.)

Ответы на тест 3 по Информатике 7 класс

Ответы на тест 3 по Информатике 7 класс — это пособие для родителей для проверки правильности ответов обучающихся детей (ГДЗ) на «Тестовые вопросы для самоконтроля», указанные в учебнике Информатики. Как утверждают авторы учебника (Л.Л.Босова, А.Ю.Босова) в конце каждой главы приведены тестовые задания, которые помогут оценить, хорошо ли учащиеся освоили теоретический материал и могут ли они применять свои знания для решения возникающих проблем.

Ответы на вопросы помогут родителям оперативно проверить выполнение указанных заданий.

1. К устройствам ввода графической информации относится:

а) принтер
б) монитор
в) мышь
г) видеокарта

ПРАВИЛЬНЫЙ ОТВЕТ: в) мышь

2. К устройствам вывода графической информации относится:

а) сканер
б) монитор
в) джойстик
г) графический редактор

ПРАВИЛЬНЫЙ ОТВЕТ: б) монитор

3. Наименьшим элементом изображения на графическом экране является:

а) курсор
б) символ
в) пиксель
г) линия

ПРАВИЛЬНЫЙ ОТВЕТ: в) пиксель

4. Пространственное разрешение монитора определяется как:

а) количество строк на экране
б) количество пикселей в строке
в) размер видеопамяти
г) произведение количества строк изображения на количество точек в строке

ПРАВИЛЬНЫЙ ОТВЕТ: г) произведение количества строк изображения на количество точек в строке

5. Цвет пикселя на экране монитора формируется из следующих базовых цветов:

а) красного, синего, зелёного
б) красного, жёлтого, синего
в) жёлтого, голубого, пурпурного
г) красного, оранжевого, жёлтого, зелёного, голубого, синего, фиолетового

ПРАВИЛЬНЫЙ ОТВЕТ: а) красного, синего, зелёного

6. Глубина цвета — это количество:

а) цветов в палитре
б) битов, которые используются для кодирования цвета одного пикселя
в) базовых цветов
г) пикселей изображения

ПРАВИЛЬНЫЙ ОТВЕТ: б) битов, которые используются для кодирования цвета одного пикселя

7. Видеопамять предназначена для:

а) хранения информации о цвете каждого пикселя экрана монитора
б) хранения информации о количестве пикселей на экране монитора
в) постоянного хранения графической информации
г) вывода графической информации на экран монитора

ПРАВИЛЬНЫЙ ОТВЕТ: а) хранения информации о цвете каждого пикселя экрана монитора

8. Графическим объектом не является:

а) рисунок
б) текст письма
в) схема
г) чертёж

ПРАВИЛЬНЫЙ ОТВЕТ: б) текст письма

9. Графический редактор — это:

а) устройство для создания и редактирования рисунков
б) программа для создания и редактирования текстовых изображений
в) устройство для печати рисунков на бумаге
г) программа для создания и редактирования рисунков

ПРАВИЛЬНЫЙ ОТВЕТ: г) программа для создания и редактирования рисунков

10. Достоинство растрового изображения:

а) чёткие и ясные контуры
б) небольшой размер файлов
в) точность цветопередачи
г) возможность масштабирования без потери качества

ПРАВИЛЬНЫЙ ОТВЕТ: в) точность цветопередачи

11. Векторные изображения строятся из:

а) отдельных пикселей
б) графических примитивов
в) фрагментов готовых изображений
г) отрезков и прямоугольников

ПРАВИЛЬНЫЙ ОТВЕТ: б) графических примитивов

12. Растровым графическим редактором НЕ является:

а) Gimp
б) Paint
в) Adobe Photoshop
г) CorelDraw

ПРАВИЛЬНЫЙ ОТВЕТ: г) CorelDraw

13. Несжатое растровое изображение размером 64 х 512 пикселей занимает 32 Кб памяти. Каково максимально возможное число цветов в палитре изображения?

а) 8
б) 16
в) 24
г) 256

ПРАВИЛЬНЫЙ ОТВЕТ: г) 256

14. Некое растровое изображение было сохранено в файле p1.bmp как 24 -разрядный рисунок. Во сколько раз будет меньше информационный объём файла p2.bmp , если в нём это же изображение сохранить как 16 -цветный рисунок?

а) 1,5
б) 6
в) 8
г) размер файла не изменится

ПРАВИЛЬНЫЙ ОТВЕТ: б) 6

15. Сканируется цветное изображение размером 25 х 30 см . Разрешающая способность сканера 300 х 300 dpi , глубина цвета — 3 байта . Какой информационный объём будет иметь полученный графический файл?

а) примерно 30 Мб
б) примерно 30 Кб
в) около 200 Мб
г) примерно 10 Мб

ПРАВИЛЬНЫЙ ОТВЕТ: а) примерно 30 Мб

16. Рассчитайте объём видеопамяти, необходимой для хранения графического изображения, занимающего весь экран монитора с разрешением 1280 х 1024 и палитрой из 65 536 цветов.

а) 2560 битов
б) 2,5 Кб
в) 2,5 Мб
г) 256 Мб

ПРАВИЛЬНЫЙ ОТВЕТ: в) 2,5 Мб

Вы смотрели «Ответы на тест 3 по Информатике 7 класс (Л.Л. Босова, Ответы на вопросы)»

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты