Light-electric.com

IT Журнал
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Программирование сокетов c

Программирование сокетов на C / C ++

Что такое сокет программирования?
Сокетное программирование — это способ соединения двух узлов в сети для связи друг с другом. Один сокет (узел) прослушивает определенный порт с IP-адреса, а другой сокет обращается к другому, чтобы сформировать соединение. Сервер формирует сокет слушателя, в то время как клиент обращается к серверу.

Диаграмма состояний для модели сервера и клиента

Этапы для сервера

    Создание сокета:

sockfd: дескриптор сокета, целое число (как дескриптор файла)
домен: целое число, домен связи, например, AF_INET (протокол IPv4), AF_INET6 (протокол IPv6)
тип: тип связи
SOCK_STREAM: TCP (надежный, ориентированный на соединение)
SOCK_DGRAM: UDP (ненадежный, без установления соединения)
protocol: значение протокола для интернет-протокола (IP), равное 0. Это то же число, которое указывается в поле протокола в заголовке IP пакета.

Setsockopt:

Это помогает в манипулировании опциями для сокета, на который ссылается дескриптор файла sockfd. Это совершенно необязательно, но помогает в повторном использовании адреса и порта. Предотвращает ошибку, такую как: «адрес уже используется».

Bind:

После создания сокета функция bind связывает сокет с адресом и номером порта, указанными в addr (пользовательская структура данных). В примере кода мы привязываем сервер к локальному узлу, поэтому мы используем INADDR_ANY для указания IP-адреса.

Слушать:

Он переводит сокет сервера в пассивный режим, в котором он ждет, пока клиент подойдет к серверу, чтобы установить соединение. Журнал ожидания определяет максимальную длину, до которой может увеличиваться очередь ожидающих соединений для sockfd. Если запрос на подключение приходит, когда очередь заполнена, клиент может получить ошибку с указанием ECONNREFUSED.

Accept:

Он извлекает первый запрос на соединение в очереди ожидающих соединений для прослушивающего сокета, sockfd, создает новый подключенный сокет и возвращает новый дескриптор файла, ссылающийся на этот сокет. В этот момент устанавливается соединение между клиентом и сервером, и они готовы к передаче данных.

Этапы для клиента

  • Сокетное соединение: точно так же, как и при создании сокета сервера
  • Connect:

Системный вызов connect () соединяет сокет, указанный дескриптором файла sockfd, с адресом, указанным в addr. Адрес и порт сервера указаны в addr.

Реализация
Здесь мы обмениваемся одним приветственным сообщением между сервером и клиентом, чтобы продемонстрировать модель клиент / сервер.

// Серверная программа на C / C ++ для демонстрации программирования Socket
#include
#include
#include
#include
#include
#include
#define PORT 8080

int main( int argc, char const *argv[])

int server_fd, new_socket, valread;

struct sockaddr_in address;

int addrlen = sizeof (address);

char *hello = «Hello from server» ;

// Создание дескриптора файла сокета

if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0)

perror ( «socket failed» );

// Принудительное подключение сокета к порту 8080

if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT,

address.sin_port = htons( PORT );

// Принудительное подключение сокета к порту 8080

if (bind(server_fd, ( struct sockaddr *)&address,

perror ( «bind failed» );

if (listen(server_fd, 3)

if ((new_socket = accept(server_fd, ( struct sockaddr *)&address,

valread = read( new_socket , buffer, 1024);

printf ( «%sn» ,buffer );

send(new_socket , hello , strlen (hello) , 0 );

printf ( «Hello message sentn» );

// Клиентская программа C / C ++ для демонстрации программирования Socket
#include
#include
#include
#include
#include
#define PORT 8080

int main( int argc, char const *argv[])

int sock = 0, valread;

struct sockaddr_in serv_addr;

char *hello = «Hello from client» ;

if ((sock = socket(AF_INET, SOCK_STREAM, 0))

printf ( «n Socket creation error n» );

// Преобразование адресов IPv4 и IPv6 из текста в двоичную форму

if (inet_pton(AF_INET, «127.0.0.1» , &serv_addr.sin_addr)

printf ( «nInvalid address/ Address not supported n» );

if (connect(sock, ( struct sockaddr *)&serv_addr, sizeof (serv_addr))

printf ( «nConnection Failed n» );

send(sock , hello , strlen (hello) , 0 );

printf ( «Hello message sentn» );

valread = read( sock , buffer, 1024);

printf ( «%sn» ,buffer );

Компиляция:
gcc client.c -o клиент
gcc server.c -o сервер

Выход:

Next: Программирование на языке сокетов на C / C ++: обработка нескольких клиентов на сервере без многопоточности
Эта статья предоставлена Акшат Синха . Если вы как GeeksforGeeks и хотели бы внести свой вклад, вы также можете написать статью с помощью contribute.geeksforgeeks.org или по почте статьи contribute@geeksforgeeks.org. Смотрите свою статью, появляющуюся на главной странице GeeksforGeeks, и помогите другим вундеркиндам.

Пожалуйста, пишите комментарии, если вы обнаружите что-то неправильное или вы хотите поделиться дополнительной информацией по обсуждаемой выше теме.

Сокеты

Сокет — это один конец двустороннего канала связи между двумя программами, работающими в сети. Соединяя вместе два сокета, можно передавать данные между разными процессами (локальными или удаленными). Реализация сокетов обеспечивает инкапсуляцию протоколов сетевого и транспортного уровней.

Первоначально сокеты были разработаны для UNIX в Калифорнийском университете в Беркли. В UNIX обеспечивающий связь метод ввода-вывода следует алгоритму open/read/write/close. Прежде чем ресурс использовать, его нужно открыть, задав соответствующие разрешения и другие параметры. Как только ресурс открыт, из него можно считывать или в него записывать данные. После использования ресурса пользователь должен вызывать метод Close(), чтобы подать сигнал операционной системе о завершении его работы с этим ресурсом.

Когда в операционную систему UNIX были добавлены средства межпроцессного взаимодействия (Inter-Process Communication, IPC) и сетевого обмена, был заимствован привычный шаблон ввода-вывода. Все ресурсы, открытые для связи, в UNIX и Windows идентифицируются дескрипторами. Эти дескрипторы, или описатели (handles), могут указывать на файл, память или какой-либо другой канал связи, а фактически указывают на внутреннюю структуру данных, используемую операционной системой. Сокет, будучи таким же ресурсом, тоже представляется дескриптором. Следовательно, для сокетов жизнь дескриптора можно разделить на три фазы: открыть (создать) сокет, получить из сокета или отправить сокету и в конце концов закрыть сокет.

Интерфейс IPC для взаимодействия между разными процессами построен поверх методов ввода-вывода. Они облегчают для сокетов отправку и получение данных. Каждый целевой объект задается адресом сокета, следовательно, этот адрес можно указать в клиенте, чтобы установить соединение с целью.

Типы сокетов

Существуют два основных типа сокетов — потоковые сокеты и дейтаграммные.

Потоковые сокеты (stream socket)

Потоковый сокет — это сокет с установленным соединением, состоящий из потока байтов, который может быть двунаправленным, т, е. через эту конечную точку приложение может и передавать, и получать данные.

Потоковый сокет гарантирует исправление ошибок, обрабатывает доставку и сохраняет последовательность данных. На него можно положиться в доставке упорядоченных, сдублированных данных. Потоковый сокет также подходит для передачи больших объемов данных, поскольку накладные расходы, связанные с установлением отдельного соединения для каждого отправляемого сообщения, может оказаться неприемлемым для небольших объемов данных. Потоковые сокеты достигают этого уровня качества за счет использования протокола Transmission Control Protocol (TCP) . TCP обеспечивает поступление данных на другую сторону в нужной последовательности и без ошибок.

Для этого типа сокетов путь формируется до начала передачи сообщений. Тем самым гарантируется, что обе участвующие во взаимодействии стороны принимают и отвечают. Если приложение отправляет получателю два сообщения, то гарантируется, что эти сообщения будут получены в той же последовательности.

Однако, отдельные сообщения могут дробиться на пакеты, и способа определить границы записей не существует. При использовании TCP этот протокол берет на себя разбиение передаваемых данных на пакеты соответствующего размера, отправку их в сеть и сборку их на другой стороне. Приложение знает только, что оно отправляет на уровень TCP определенное число байтов и другая сторона получает эти байты. В свою очередь TCP эффективно разбивает эти данные на пакеты подходящего размера, получает эти пакеты на другой стороне, выделяет из них данные и объединяет их вместе.

Потоки базируются на явных соединениях: сокет А запрашивает соединение с сокетом В, а сокет В либо соглашается с запросом на установление соединения, либо отвергает его.

Если данные должны гарантированно доставляться другой стороне или размер их велик, потоковые сокеты предпочтительнее дейтаграммных. Следовательно, если надежность связи между двумя приложениями имеет первостепенное значение, выбирайте потоковые сокеты.

Сервер электронной почты представляет пример приложения, которое должно доставлять содержание в правильном порядке, без дублирования и пропусков. Потоковый сокет рассчитывает, что TCP обеспечит доставку сообщений по их назначениям.

Дейтаграммные сокеты (datagram socket)

Дейтаграммные сокеты иногда называют сокетами без организации соединений, т. е. никакого явного соединения между ними не устанавливается — сообщение отправляется указанному сокету и, соответственно, может получаться от указанного сокета.

Потоковые сокеты по сравнению с дейтаграммными действительно дают более надежный метод, но для некоторых приложений накладные расходы, связанные с установкой явного соединения, неприемлемы (например, сервер времени суток, обеспечивающий синхронизацию времени для своих клиентов). В конце концов на установление надежного соединения с сервером требуется время, которое просто вносит задержки в обслуживание, и задача серверного приложения не выполняется. Для сокращения накладных расходов нужно использовать дейтаграммные сокеты.

Использование дейтаграммных сокетов требует, чтобы передачей данных от клиента к серверу занимался User Datagram Protocol (UDP) . В этом протоколе на размер сообщений налагаются некоторые ограничения, и в отличие от потоковых сокетов, умеющих надежно отправлять сообщения серверу-адресату, дейтаграммные сокеты надежность не обеспечивают. Если данные затерялись где-то в сети, сервер не сообщит об ошибках.

Кроме двух рассмотренных типов существует также обобщенная форма сокетов, которую называют необрабатываемыми или сырыми.

Сырые сокеты (raw socket)

Главная цель использования сырых сокетов состоит в обходе механизма, с помощью которого компьютер обрабатывает TCP/IP. Это достигается обеспечением специальной реализации стека TCP/IP, замещающей механизм, предоставленный стеком TCP/IP в ядре — пакет непосредственно передается приложению и, следовательно, обрабатывается гораздо эффективнее, чем при проходе через главный стек протоколов клиента.

По определению, сырой сокет — это сокет, который принимает пакеты, обходит уровни TCP и UDP в стеке TCP/IP и отправляет их непосредственно приложению.

При использовании таких сокетов пакет не проходит через фильтр TCP/IP, т.е. никак не обрабатывается, и предстает в своей сырой форме. В таком случае обязанность правильно обработать все данные и выполнить такие действия, как удаление заголовков и разбор полей, ложится на получающее приложение — все равно, что включить в приложение небольшой стек TCP/IP.

Однако нечасто может потребоваться программа, работающая с сырыми сокетами. Если вы не пишете системное программное обеспечение или программу, аналогичную анализатору пакетов, вникать в такие детали не придется. Сырые сокеты главным образом используются при разработке специализированных низкоуровневых протокольных приложений. Например, такие разнообразные утилиты TCP/IP, как trace route, ping или arp, используют сырые сокеты.

Работа с сырыми сокетами требует солидного знания базовых протоколов TCP/UDP/IP.

Порты

Порт определен, чтобы разрешить задачу одновременного взаимодействия с несколькими приложениями. По существу с его помощью расширяется понятие IP-адреса. Компьютер, на котором в одно время выполняется несколько приложений, получая пакет из сети, может идентифицировать целевой процесс, пользуясь уникальным номером порта, определенным при установлении соединения.

Сокет состоит из IP-адреса машины и номера порта, используемого приложением TCP. Поскольку IP-адрес уникален в Интернете, а номера портов уникальны на отдельной машине, номера сокетов также уникальны во всем Интернете. Эта характеристика позволяет процессу общаться через сеть с другим процессом исключительно на основании номера сокета.

За определенными службами номера портов зарезервированы — это широко известные номера портов, например порт 21, использующийся в FTP. Ваше приложение может пользоваться любым номером порта, который не был зарезервирован и пока не занят. Агентство Internet Assigned Numbers Authority (IANA) ведет перечень широко известных номеров портов.

Обычно приложение клиент-сервер, использующее сокеты, состоит из двух разных приложений — клиента, инициирующего соединение с целью (сервером), и сервера, ожидающего соединения от клиента.

Например, на стороне клиента, приложение должно знать адрес цели и номер порта. Отправляя запрос на соединение, клиент пытается установить соединение с сервером:

Если события развиваются удачно, при условии что сервер запущен прежде, чем клиент попытался с ним соединиться, сервер соглашается на соединение. Дав согласие, серверное приложение создает новый сокет для взаимодействия именно с установившим соединение клиентом:

Теперь клиент и сервер могут взаимодействовать между собой, считывая сообщения каждый из своего сокета и, соответственно, записывая сообщения.

C: сокеты и пример модели client-server

Перевод с дополнениями. Оригинал — тут>>>.

Как правило — два процесса общаются друг с другом с помощью одного из Inter Process Communication ( IPC ) механизма ядра, таких как:

  • pipe
  • очереди сообщений (Message queues)
  • общая память (shared memory)

Кроме перечисленных IPC — в ядре присутствует много других возможностей, но что если процессам необходимо обмениваться данными по сети?

Тут используется ещё один механизм IPC — сокеты.

Что такое сокет?

Сокеты (англ. socket — разъём) — название программного интерфейса для обеспечения обмена данными между процессами. Процессы при таком обмене могут исполняться как на одной ЭВМ, так и на различных ЭВМ, связанных между собой сетью. Сокет — абстрактный объект, представляющий конечную точку соединения.

Кратко говоря — существует два типа сокетов — UNIX-сокеты (или сокеты домена UNIXUnix domain sockets) и INET-сокеты (IP-сокеты, network sockets).

UNIX-сокеты чвляются частью механизма IPC и позволяют обмен данными в обоих направлениях между процессами, работающими на одной машине.

INET-сокеты в свою очередь представляют собой механизм, позволяющий выполнять коммуникацию между процессами по сети.

Грубо говоря — если UNIX-сокет использует файл в файловой системе, то INET-сокет — требует присваивания сетевого адреса и порта.

Больше про сокеты:

Коммуникация в среде TCP/IP происходит по клиент-серверной модели, т.е. — клиент инициализирует связь, а сервер его принимает.

Ниже — пример сервера, который будет работать как демон и ожидать подключения клиента, а при инициализации клиентом соединения — передаст ему дату и время.

Socket сервер

Наш сервер будет выглядеть следующим образом:

Флаг —tcp для netstat указывает на то, что требуется вывести информацию только по INET-сокетам.

Самый простой способ получить данные от нашего сервера — с помощью telnet , проверяем ещё раз:


Tue May 16 12:43:24 2017

Теперь — давайте рассмотрим сам код сервера.

  • с помощью вызова функции socket() в области ядра создаётся неименованный сокет, и возвращается его socket descriptor
  • первым аргументом этой функции передаётся тип домена. Т.к. мы будем использовать сеть — то используем тип сокета AF_INET (IPv4).
  • вторым аргументом — SOCK_STREAM , который указывает на тип протокола. Для TCP — это будет SOCK_STREAM , для UDP — SOCK_DGRAM
  • третий аргумент оставляем по умолчанию — тут ядро само решит какой тип протокола использовать (т.к. мы указали SOCK_STREAM — то будет выбран TCP)

Далее — вызывается функция bind () :

  • bind() создаёт сокет используя параметры из структуры serv_addr (протокол, IP-адрес и порт)
  • вызов функции listen() со вторым аргументом 10 указывает на макс. допустимое кол-во подключений. Первым аргументом — передаётся дескриптор сокета, который необходимо прослушивать.
  • сервер запускает бесконченый цикл, ожидая входящего соединения, и вызывает accept() , как только соединение установлено. В свою очередь accept() создаёт новый сокет для каждого соединения, вовзращает дескриптор сокета
  • как только соединение установлено (т.е. сокет создан) — функция snprintf() вписывает время и дату в буфер, после чего вызывается write() , которая вписывает данные из буфера в сокет

Socket клиент

Перейдём ко второй программе — клиенту.

Код её будет выглядеть следующим образом:

Кратко рассмотрим его:

  • аналогично серверу — создаём сокет
  • в структуру sockaddr_in с именем serv_addr заносятся протокол, порт (5000) и адрес сервера (первый аргумент — argv[1] )
  • функция connect() пытается установить соединение с хостом, используя данные из структуры serv_addr

И в конце-концов — клиент с помощью read() получает данные из своего сокета, в который поступают данные от сокета на сервере.

Собираем клиент, и пробуем подключиться к нашему серверу:

Программирование сокетов

Для обеспечения сетевых коммуникаций используются сокеты. Сокет это конечная точка сетевых коммуникаций. Каждый использующийся сокет имеет тип и ассоциированный с ним процесс. Сокеты существуют внутри коммуникационных доменов. Домены это абстракции, которые подразумевают конкретную структуру адресации и множество протоколов, которое определяет различные типы сокетов внутри домена. Примерами коммуникационных доменов могут быть: UNIX домен, Internet домен, и т.д.

В Internet домене сокет — это комбинация IP адреса и номера порта, которая однозначно определяет отдельный сетевой процесс во всей глобальной сети Internet. Два сокета, один для хоста-получателя, другой для хоста-отправителя, определяют соединение для протоколов, ориентированных на установление связи, таких, как TCP.

  • Создание сокета
  • Привязка к локальным именам
  • Установление связи
  • Передача данных
  • Закрывание сокетов
  • Пример функции, для установления WWW коннекции

Создание сокета

Для создания сокета используется системный вызов socket.

Этот вызов основывается на информации о коммуникационном домене и типе сокета. Для использования особенностей Internet, значения параметров должны быть следующими:

  • communication domain — AF_INET (Internet протоколы).
  • type of the socket — SOCK_STREAM; Этот тип обеспечивает последовательный, надежный, ориентированный на установление двусторонней связи поток байтов.

Выше был упомянут сокет с типом stream. Краткое описание других типов сокетов приведено ниже:

  • Datagram socket — поддерживает двусторонний поток данных. Не гарантируется, что этот поток будет последовательным, надежным, и что данные не будут дублироваться. Важной характеристикой данного сокета является то, что границы записи данных предопределены.
  • Raw socket — обеспечивает возможность пользовательского доступа к низлежащим коммуникационным протоколам, поддерживающим сокет-абстракции. Такие сокеты обычно являются датаграм- ориентированными.

Функция socket создает конечную точку для коммуникаций и возвращает файловый дескриптор, ссылающийся на сокет, или -1 в случае ошибки. Данный дескриптор используется в дальнейшем для установления связи.

Для создания сокета типа stream с протоколом TCP, обеспечивающим коммуникационную поддержку, вызов функции socket должен быть следующим:

Привязка к локальным именам

Сокет создается без имени. Пока с сокетом не будет связано имя, удаленные процессы не имеют возможности ссылаться на него и, следовательно, на данном сокете не может быть получено никаких сообщений. Коммуникационные процессы используют для данных целей ассоциации. В Internet домене ассоциация складывается из локального и удаленного адреса и из локального и удаленного порта. В большинстве доменов ассоциация должна быть уникальной.

В Internet домене связывание сокета и имени может быть весьма сложным, но, к счастью, обычно нет необходимости специально привязывать адрес и номер порта к сокету, так как функции connect и send автоматически свяжут данный сокет с подходящим адресом, если это не было сделано до их вызова.

Для связывания сокета с адресом и номером порта используют системный вызов bind:

Привязываемое имя (name) это строка байт переменной длины, которая интерпретируется поддерживаемым протоколом. Интерпретация может различаться в различных коммуникационных доменах.

Установление связи

Со стороны клиента связь устанавливается с помощью стандартной функции connect:

которая инициирует установление связи на сокете, используя дескриптор сокета s и информацию из структуры serveraddr, имеющей тип sockaddr_in, которая содержит адрес сервера и номер порта на который надо установить связь. Если сокет не был связан с адресом, connect автоматически вызовет системную функцию bind.

Connect возвращает 0, если вызов прошел успешно. Возвращенная величина -1 указывает на то, что в процессе установления связи произошла некая ошибка. В случае успешного вызова функции процесс может работать с дескриптором сокета, используя функции read и write, и закрывать канал используя функцию close.

Со стороны сервера процесс установления связи сложнее. Когда сервер желает предложить один из своих сервисов, он связывает сокет с общеизвестным адресом, ассоциирующимся с данным сервисом, и пассивно слушает этот сокет. Для этих целей используется системный вызов listen:

где s это дескриптор сокета, а qlength это максимальное количество запросов на установление связи, которые могут стоять в очереди, ожидая обработки сервером; это количество может быть ограничено особенностями системы.

Когда сервер получает запрос от клиента и принимает решение об установлении связи, он создает новый сокет и связывает его с ассоциацией, эквивалентной ‘слушающему сокету’. Для Internet домена это означает тот же самый номер порта. Для этой цели используется системный вызов accept:

Сокет, ассоциированный клиентом, и сокет, который был возвращен функцией accept, используются для установления связи между сервером и клиентом.

Передача данных

Когда связь установлена, с помощью различных функций может начаться процесс передачи данных. При наличии связи, пользователь может посылать и получать сообщения с помощью функций read и write:

Вызовы send и recv практически идентичны read и write, за исключением того, что добавляется аргумент флагов.

Могут быть указаны один или более флагов с помощью ненулевых значений, таких, как следующие:

  • MSG_OOB — Посылать/получать данные, характерные для сокетов типа stream.
  • MSG_PEEK — Просматривать данные без чтения. когда указывается в recv, любые присутствующие данные возвращаются пользователю, но сами данные остаются как «непрочитанные». Следующий read или recv вызванный на данном сокете вернет прочитанные в прошлый раз данные.
  • MSG_DONTROUTE — посылать данные без маршрутизации пакетов. (Используется только процессами, управляющими таблицами маршрутизации.)

Закрывание сокетов

Когда взаимодействующие модули решают прекратить передачу данных и закрыть сеанс связи, они обмениваются трехсторонним рукопожатием с сегментами, содержащими установленный бит «От отправителя больше нет данных» (этот бит еще называется FIN бит).

Если сокет больше не используется, процесс может закрыть его с помощью функции close, вызвав ее с соответствующим дескриптором сокета:

Если данные были ассоциированы с сокетом, обещающим доставку (сокет типа stream), система будет пытаться осуществить передачу этих данных. Тем не менее, по истечении довольно таки длительного промежутка времени, если данные все еще не доставлены, они будут отброшены. Если пользовательский процесс желает прекратить любую передачу данных, он может сделать это с помощью вызова shutdown на данном сокете для его закрытия. Вызов shutdown вызывает «моментальное» отбрасывание всех стоящих в очереди данных. Формат вызова следующий:

где how имеет одно из следующих значений:

  • 0 — если пользователь больше не желает читать данные
  • 1 — если данные больше не будут посылаться
  • 2 — если данные не будут ни посылаться ни получаться

Пример функции, для установления WWW коннекции

Purely functional

Страницы

вторник, 3 января 2012 г.

Введение в Windows Sockets API: Серверные сокеты C++

Входящие подключения со стороны сторонних приложений обрабатываются через специальный серверный (слушающий) сокет, который создается на стороне сервера с привязкой к конкретному порту.

Примером программы, использующей серверные сокеты, может служить приложение, обрабатывающие некую телеметрическую информацию, поступающую от дочерних приложений-клиентов. Приложение-сервер создает слушающий сокет с привязкой к конкретному порту и уходит в режим ожидания подключений (можно создать отельный поток для ожидания подключений, чтобы программа «не висла»). Приложение-клиент подключается к слушающему сокету, после чего можно начинать обмен данными.

Инициализация WSA

Как я уже писал в предыдущей статье, перед началом работы с сокетами необходимо провести инициализацию Windows Sockets API.

Подготовка данных для создания сокета

Функция getaddrinfo используется для определения значений в структуре sockaddr.

  • AF_INET указывает, что используется четвертая версия IP протокола.
  • SOCK_STREAM используется для определения потока сокета.
  • IPPROTO_TCP используется для определения TCP протокола.
  • 270015 это номер порта, к которому будет подключаться клиент.

Создание сокета

Для создания сокета вызываем функцию socket с данными, подготовленными в предыдущем шаге, если создание пройдет успешно, то функция вернет дескриптор сокета.

Связывание сокета с сетвевым адресом

После того, как мы создали сокет, его необходимо связать с конкретным сетевым адресом. Для этого надо вызвать функцию bind и передать ей в качестве аргументов дескриптор сокета и данные из структуры sockaddr.
Информация об адресе, хранимая в переменной result, больше не требуется, поэтому мы можем ее удалить, используя функцию freeaddrinfo.

Прослушивание подключений

Для прослушивания входящих подключений надо вызывать функцию listen, в аргументах передать созданный сокет и максимальную длину очереди клиентов ожидающих подключения. В примере использована константа SOMAXCONN, указывающая разумную максимальную длину очереди для текущей системы.

Обработка запроса на подключение

Обработка запроса на подключение заключается в создании клиентского сокета для текущего входящего подключения. Есть несколько методов обработки запросов, один из них заключается в том, чтобы создать непрерывный цикл, в котором проверяется наличия входящих подключений и последующая обработка запроса в текущем процессе, либо в отдельном потоке. В первом случае, программа не сможет обработать другие подключения, пока не обработается текущее подключение. В нашем случае используется тривиальный способ обработки единственного запроса, без использования потоков и циклов.

Обмен данными

Создав клиентский сокет для входящего подключения, можно начать обмен данными используя функции recv и send. Пример демонстрирует примерную технологию обмена данными между двумя процессами, она ничем не отличается от технологии обмена данными на стороне клиента.

Заключение

Это заключительная теоретическая часть из серии статей посвященных введению в сетевое программирование в среде Windows. В последующих, практических статьях, я покажу как можно создать простое сетевое приложение.
Дополнительную информацию о функциях, структурах WSA можно найти в MSDN: Winsock reference.

Читать еще:  Азы программирования c
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector